Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phys ; 121(9-10)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470065

RESUMO

We present a new software package called M-Chem that is designed from scratch in C++ and parallelized on shared-memory multi-core architectures to facilitate efficient molecular simulations. Currently, M-Chem is a fast molecular dynamics (MD) engine that supports the evaluation of energies and forces from two-body to many-body all-atom potentials, reactive force fields, coarse-grained models, combined quantum mechanics molecular mechanics (QM/MM) models, and external force drivers from machine learning, augmented by algorithms that are focused on gains in computational simulation times. M-Chem also includes a range of standard simulation capabilities including thermostats, barostats, multi-timestepping, and periodic cells, as well as newer methods such as fast extended Lagrangians and high quality electrostatic potential generation. At present M-Chem is a developer friendly environment in which we encourage new software contributors from diverse fields to build their algorithms, models, and methods in our modular framework. The long-term objective of M-Chem is to create an interdisciplinary platform for computational methods with applications ranging from biomolecular simulations, reactive chemistry, to materials research.

2.
J Chem Theory Comput ; 18(12): 7336-7349, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36459992

RESUMO

In this work, we developed and showcased the occ-RI-K algorithm to compute the exact exchange contribution in density functional calculations of solids near the basis set limit. Within the Gaussian planewave (GPW) density fitting, our algorithm achieves a 1-2 orders of magnitude speedup compared to conventional GPW algorithms. Since our algorithm is well suited for simulations with large basis sets, we applied it to 12 hybrid density functionals with pseudopotentials and a large uncontracted basis set to assess their performance on band gaps of 25 simple solids near the basis set limit. The largest calculation performed in this work involves 16 electrons and 350 basis functions in the unit cell utilizing a 6 × 6 × 6 k-mesh. With 20-27% exact exchange, global hybrid functionals (B3LYP, PBE0, revPBE0, B97-3, SCAN0) perform similarly with a root-mean-square deviation (RMSD) of 0.61-0.77 eV, while other global hybrid functionals such as M06-2X (2.02 eV) and MN15 (1.05 eV) show higher RMSD due to their increased fraction of exact exchange. A short-range hybrid functional, HSE achieves a similar RMSD (0.76 eV) but shows a notable underestimation of band gaps due to the complete lack of long-range exchange. We found that two combinatorially optimized range-separated hybrid functionals, ωB97X-rV (3.94 eV) and ωB97M-rV (3.40 eV), and the two other range-separated hybrid functionals, CAM-B3LYP (2.41 eV) and CAM-QTP01 (4.16 eV), significantly overestimate the band gap because of their high fraction of long-range exact exchange. Given the failure of ωB97X-rV and ωB97M-rV, we have yet to find a density functional that offers consistent performance for both molecules and solids. Our algorithm development and density functional assessment will serve as a stepping stone toward developing more accurate hybrid functionals and applying them to practical applications.

3.
J Chem Phys ; 157(18): 184802, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379804

RESUMO

We implemented a screening algorithm for one-electron-three-center overlap integrals over contracted Gaussian-type orbitals into the Q-Chem program package. The respective bounds were derived using shell-bounding Gaussians and the Obara-Saika recurrence relations. Using integral screening, we reduced the computational scaling of the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) model in terms of calculation time and memory usage to a linear relationship with the tesserae used to discretize the surface area. Further code improvements allowed for additional performance boosts. To demonstrate the algorithm's better performance, we calculated the compressibility of fullerenes up to C180, where we were originally limited to C40 due to the high RAM usage of GOSTSHYP.

4.
J Phys Chem B ; 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35653199

RESUMO

Molecular dynamics (MD) simulations employing ab initio quantum mechanical and molecular mechanical (ai-QM/MM) potentials are considered to be the state of the art, but the high computational cost associated with the ai-QM calculations remains a theoretical challenge for their routine application. Here, we present a modified protocol of the multiple time step (MTS) method for accelerating ai-QM/MM MD simulations of condensed-phase reactions. Within a previous MTS protocol [Nam J. Chem. Theory Comput. 2014, 10, 4175], reference forces are evaluated using a low-level (semiempirical QM/MM) Hamiltonian and employed at inner time steps to propagate the nuclear motions. Correction forces, which arise from the force differences between high-level (ai-QM/MM) and low-level Hamiltonians, are applied at outer time steps, where the MTS algorithm allows the time-reversible integration of the correction forces. To increase the outer step size, which is bound by the highest-frequency component in the correction forces, the semiempirical QM Hamiltonian is recalibrated in this work to minimize the magnitude of the correction forces. The remaining high-frequency modes, which are mainly bond stretches involving hydrogen atoms, are then removed from the correction forces. When combined with a Langevin or SIN(R) thermostat, the modified MTS-QM/MM scheme remains robust with an up to 8 (with Langevin) or 10 fs (with SIN(R)) outer time step (with 1 fs inner time steps) for the chorismate mutase system. This leads to an over 5-fold speedup over standard ai-QM/MM simulations, without sacrificing the accuracy in the predicted free energy profile of the reaction.

5.
J Chem Phys ; 155(16): 164102, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717349

RESUMO

Simulating solids with quantum chemistry methods and Gaussian-type orbitals (GTOs) has been gaining popularity. Nonetheless, there are few systematic studies that assess the basis set incompleteness error (BSIE) in these GTO-based simulations over a variety of solids. In this work, we report a GTO-based implementation for solids and apply it to address the basis set convergence issue. We employ a simple strategy to generate large uncontracted (unc) GTO basis sets that we call the unc-def2-GTH sets. These basis sets exhibit systematic improvement toward the basis set limit as well as good transferability based on application to a total of 43 simple semiconductors. Most notably, we found the BSIE of unc-def2-QZVP-GTH to be smaller than 0.7 mEh per atom in total energies and 20 meV in bandgaps for all systems considered here. Using unc-def2-QZVP-GTH, we report bandgap benchmarks of a combinatorially designed meta-generalized gradient approximation (mGGA) functional, B97M-rV, and show that B97M-rV performs similarly (a root-mean-square-deviation of 1.18 eV) to other modern mGGA functionals, M06-L (1.26 eV), MN15-L (1.29 eV), and Strongly Constrained and Appropriately Normed (SCAN) (1.20 eV). This represents a clear improvement over older pure functionals such as local density approximation (1.71 eV) and Perdew-Burke-Ernzerhof (PBE) (1.49 eV), although all these mGGAs are still far from being quantitatively accurate. We also provide several cautionary notes on the use of our uncontracted bases and on future research on GTO basis set development for solids.

6.
J Chem Theory Comput ; 17(9): 5745-5758, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34468138

RESUMO

Despite recent advances in the development of machine learning potentials (MLPs) for biomolecular simulations, there has been limited effort on developing stable and accurate MLPs for enzymatic reactions. Here we report a protocol for performing machine-learning-assisted free energy simulation of solution-phase and enzyme reactions at the ab initio quantum-mechanical/molecular-mechanical (ai-QM/MM) level of accuracy. Within our protocol, the MLP is built to reproduce the ai-QM/MM energy and forces on both QM (reactive) and MM (solvent/enzyme) atoms. As an alternative strategy, a delta machine learning potential (ΔMLP) is trained to reproduce the differences between the ai-QM/MM and semiempirical (se) QM/MM energies and forces. To account for the effect of the condensed-phase environment in both MLP and ΔMLP, the DeePMD representation of a molecular system is extended to incorporate the external electrostatic potential and field on each QM atom. Using the Menshutkin and chorismate mutase reactions as examples, we show that the developed MLP and ΔMLP reproduce the ai-QM/MM energy and forces with errors that on average are less than 1.0 kcal/mol and 1.0 kcal mol-1 Å-1, respectively, for representative configurations along the reaction pathway. For both reactions, MLP/ΔMLP-based simulations yielded free energy profiles that differed by less than 1.0 kcal/mol from the reference ai-QM/MM results at only a fraction of the computational cost.


Assuntos
Aprendizado de Máquina , Teoria Quântica , Termodinâmica
7.
J Chem Phys ; 155(8): 084801, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34470363

RESUMO

This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.

8.
J Chem Phys ; 154(5): 054108, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557565

RESUMO

The nuclear-electronic orbital (NEO) method is a multicomponent quantum chemistry theory that describes electronic and nuclear quantum effects simultaneously while avoiding the Born-Oppenheimer approximation for certain nuclei. Typically specified hydrogen nuclei are treated quantum mechanically at the same level as the electrons, and the NEO potential energy surface depends on the classical nuclear coordinates. This approach includes nuclear quantum effects such as zero-point energy and nuclear delocalization directly into the potential energy surface. An extended NEO potential energy surface depending on the expectation values of the quantum nuclei incorporates coupling between the quantum and classical nuclei. Herein, theoretical methodology is developed to optimize and characterize stationary points on the standard or extended NEO potential energy surface, to generate the NEO minimum energy path from a transition state down to the corresponding reactant and product, and to compute thermochemical properties. For this purpose, the analytic coordinate Hessian is developed and implemented at the NEO Hartree-Fock level of theory. These NEO Hessians are used to study the SN2 reaction of ClCH3Cl- and the hydride transfer of C4H9 +. For each system, analysis of the single imaginary mode at the transition state and the intrinsic reaction coordinate along the minimum energy path identifies the dominant nuclear motions driving the chemical reaction. Visualization of the electronic and protonic orbitals along the minimum energy path illustrates the coupled electronic and protonic motions beyond the Born-Oppenheimer approximation. This work provides the foundation for applying the NEO approach at various correlated levels of theory to a wide range of chemical reactions.

9.
J Chem Phys ; 154(2): 024115, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33445891

RESUMO

In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical (MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as QM/MM calculations with periodic boundary conditions.

10.
J Chem Theory Comput ; 17(1): 583-597, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33350311

RESUMO

The computational modeling of molecules under high pressure is a growing research area that augments experimental high-pressure chemistry. Here, a new electronic structure method for modeling atoms and molecules under pressure, Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) approach, is introduced. In this method, a set of Gaussian potentials is distributed evenly on the van der Waals surface of the investigated chemical system, leading to a compression of the electron density and the atomic scaffold. Since no parameters other than pressure need to be specified, GOSTSHYP allows straightforward geometry optimizations and ab initio molecular dynamics simulations of chemical systems under pressure for nonexpert users. Calculated energies, bond lengths, and dipole moments under pressure fall within the range of established computational methods for high-pressure chemistry. A Diels-Alder reaction and the cyclotrimerization of acetylene showcase the ability of GOSTSHYP to model pressure-induced chemical reactions. The connection to mechanochemistry is pointed out.

11.
Mol Phys ; 119(21-22)2021.
Artigo em Inglês | MEDLINE | ID: mdl-35264815

RESUMO

Magnetic properties of molecules such as magnetizabilities represent second order derivatives of the energy with respect to external perturbations. To avoid the need for analytic second derivatives and thereby permit evaluation of the performance of methods where they are not available, a new implementation of quantum chemistry calculations in finite applied magnetic fields is reported. This implementation is employed for a collection of small molecules with the aug-cc-pVTZ basis set to assess orbital optimized (OO) MP2 and a recently proposed regularized variant of OOMP2, called κ-OOMP2. κ-OOMP2 performs significantly better than conventional second order Møller-Plesset (MP2) theory, by reducing MP2's exaggeration of electron correlation effects. As a chemical application, we revisit an old aromaticity criterion called magnetizability exaltation. In lieu of empirical tables or increment systems to generate references, we instead use straight chain molecules with the same formal bond structure as the target cyclic planar conjugated molecules. This procedure is found to be useful for qualitative analysis, yielding exaltations that are typically negative for aromatic species and positive for antiaromatic molecules. One interesting species, N2S2, shows a positive exaltation despite having aromatic characteristics.

12.
J Chem Theory Comput ; 15(11): 6164-6178, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31553602

RESUMO

We present a heterogeneous central processing unit (CPU) + graphical processing unit (GPU) algorithm for the direct variational optimization of the two-electron reduced-density matrix (2RDM) under two-particle N-representability conditions. This variational 2RDM (v2RDM) approach is the driver for a polynomially scaling approximation to configuration-interaction-driven complete active-space self-consistent field (CASSCF) theory. For v2RDM-based CASSCF computations involving an active space consisting of 50 electrons in 50 orbitals, we observe a speedup of a factor of 3.7 when the code is executed on a combination of an NVIDIA TITAN V GPU and an Intel Core i7-6850k CPU, relative to the case when the code is executed on the CPU alone. We use this GPU-accelerated v2RDM-CASSCF algorithm to explore the electronic structure of the 3,k-circumacene and 3,k-periacene series (k = 2-7) and compare indicators of polyradical character in the lowest-energy singlet states to those observed for oligoacene molecules. The singlet states in larger circumacene and periacene molecules display the same polyradical characteristics observed in oligoacenes, with the onset of this behavior occurring at smallest k for periacenes, followed by the circumacenes and then the oligoacenes. However, the unpaired electron density that accumulates along the zigzag edge of the circumacenes is slightly less than that which accumulates in the oligoacenes, while periacenes clearly exhibit the greatest buildup of unpaired electron density in this region.

13.
J Chem Phys ; 151(3): 034106, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31325926

RESUMO

Standard implementations of nonrelativistic excited-state calculations compute only one component of spin multiplets (i.e., Ms = 0 triplets); however, matrix elements for all components are necessary for deriving spin-dependent experimental observables. Wigner-Eckart's theorem allows one to circumvent explicit calculations of all multiplet components. We generate all other spin-orbit matrix elements by applying Wigner-Eckart's theorem to a reduced one-particle transition density matrix computed for a single multiplet component. In addition to computational efficiency, this approach also resolves the phase issue arising within Born-Oppenheimer's separation of nuclear and electronic degrees of freedom. A general formalism and its application to the calculation of spin-orbit couplings using equation-of-motion coupled-cluster wave functions are presented. The two-electron contributions are included via the mean-field spin-orbit treatment. Intrinsic issues of constructing spin-orbit mean-field operators for open-shell references are discussed, and a resolution is proposed. The method is benchmarked by using several radicals and diradicals. The merits of the approach are illustrated by a calculation of the barrier for spin inversion in a high-spin tris(pyrrolylmethyl)amine Fe(II) complex.

14.
J Chem Phys ; 151(1): 014110, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31272185

RESUMO

We present a general formulation of analytic nuclear gradients for the coupled-cluster with single and double substitution (CCSD) and equation-of-motion (EOM) CCSD energies computed using Cholesky decomposition (CD) representations of the electron repulsion integrals. By rewriting the correlated energy and response equations such that the storage of the largest four-index intermediates is eliminated, CD leads to a significant reduction in disk storage requirements, reduced I/O penalties, and an improved parallel performance. CD thus extends the scope of the systems that can be treated by (EOM-)CCSD methods, although analytic gradients in the framework of CD are needed to extend the applicability of (EOM-)CCSD methods in the context of geometry optimizations. This paper presents a formulation of analytic (EOM-)CCSD gradient within the CD framework and reports on the salient details of the corresponding implementation. The accuracy and the capabilities of analytic CD-based (EOM-)CCSD gradients are illustrated by benchmark calculations and several illustrative examples.

15.
J Chem Theory Comput ; 15(5): 3117-3133, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30964297

RESUMO

We present a fully analytical implementation of the core-valence separation (CVS) scheme for the equation-of-motion (EOM) coupled-cluster singles and doubles (CCSD) method for calculations of core-level states. Inspired by the CVS idea as originally formulated by Cederbaum, Domcke, and Schirmer, pure valence excitations are excluded from the EOM target space and the frozen-core approximation is imposed on the reference-state amplitudes and multipliers. This yields an efficient, robust, practical, and numerically balanced EOM-CCSD framework for calculations of excitation and ionization energies as well as state and transition properties (e.g., spectral intensities, natural transition, and Dyson orbitals) from both the ground and excited states. The errors in absolute excitation/ionization energies relative to the experimental reference data are on the order of 0.2-3.0 eV, depending on the K-edge considered and on the basis set used, and the shifts are systematic for each edge. Compared to a previously proposed CVS scheme where CVS was applied as a posteriori projection only during the solution of the EOM eigenvalue equations, the new scheme is computationally cheaper. It also achieves better cancellation of errors, yielding similar spectral profiles but with absolute core excitation and ionization energies that are systematically closer to the corresponding experimental data. Among the presented results are calculations of transient-state X-ray absorption spectra, relevant for interpretation of UV-pump/X-ray probe experiments.

16.
J Chem Phys ; 150(1): 014106, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621414

RESUMO

For future use in modeling photoexcited dynamics and intersystem crossing, we calculate spin-adiabatic states and their analytical nuclear gradients within configuration interaction singles theory. These energies and forces should be immediately useful for surface hopping dynamics, which are natural within an adiabatic framework. The resulting code has been implemented within the Q-Chem software and preliminary results suggest that the additional cost of including spin-orbit coupling within the singles-singles block is not large.

17.
J Chem Theory Comput ; 15(1): 276-289, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30495955

RESUMO

Analytic energy gradients are presented for a variational two-electron reduced-density-matrix-driven complete active space self-consistent field (v2RDM-CASSCF) procedure that employs the density fitting (DF) approximation to the two-electron repulsion integrals. The DF approximation significantly reduces the computational cost of v2RDM-CASSCF gradient evaluation, in terms of both the number of floating-point operations and memory requirements, enabling geometry optimizations on much larger chemical systems than could previously be considered at this level of theory [ Maradzike et al., J. Chem. Theory Comput. , 2017 , 13 , 4113 - 4122 ]. The efficacy of v2RDM-CASSCF for computing equilibrium geometries and harmonic vibrational frequencies is assessed using a set of 25 small closed- and open-shell molecules. Equilibrium bond lengths from v2RDM-CASSCF differ from those obtained from configuration-interaction-driven CASSCF (CI-CASSCF) by 0.62 and 0.05 pm, depending on whether the optimal reduced-density matrices from v2RDM-CASSCF satisfy two-particle N-representability conditions (PQG) or PQG plus partial three-particle conditions (PQG+T2), respectively. Harmonic vibrational frequencies, which are obtained by finite differences of v2RDM-CASSCF analytic energy gradients, similarly demonstrate that quantitative agreement between v2RDM- and CI-CASSCF requires the consideration of partial three-particle N-representability conditions. Lastly, optimized geometries are obtained for the lowest-energy singlet and triplet states of the linear polyacene series up to dodecacene (C50H28), in which case the active space is comprised of 50 electrons in 50 orbitals. The v2RDM-CASSCF singlet-triplet energy gap extrapolated to an infinitely long linear acene molecule is found to be 7.8 kcal mol-1.

18.
J Comput Chem ; 39(26): 2173-2182, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30368836

RESUMO

The most widely used quantum-chemical models for excited states are single-excitation theories, a category that includes configuration interaction with single substitutions, time-dependent density functional theory, and also a recently developed ab initio exciton model. When a large number of excited states are desired, these calculations incur a significant bottleneck in the "digestion" step in which two-electron integrals are contracted with density or density-like matrices. We present an implementation that moves this step onto graphical processing units (GPUs), and introduce a double-buffer scheme that minimizes latency by computing integrals on the central processing units (CPUs) concurrently with their digestion on the GPUs. An automatic code generation scheme simplifies the implementation of high-performance GPU kernels. For the exciton model, which requires separate excited-state calculations on each electronically coupled chromophore, the heterogeneous implementation described here results in speedups of 2-6× versus a CPU-only implementation. For traditional time-dependent density functional theory calculations, we obtain speedups of up to 5× when a large number of excited states is computed. © 2018 Wiley Periodicals, Inc.

19.
J Chem Theory Comput ; 14(8): 4088-4096, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29969560

RESUMO

Using single-precision floating-point representation reduces the size of data and computation time by a factor of 2 relative to double precision conventionally used in electronic structure programs. For large-scale calculations, such as those encountered in many-body theories, reduced memory footprint alleviates memory and input/output bottlenecks. Reduced size of data can lead to additional gains due to improved parallel performance on CPUs and various accelerators. However, using single precision can potentially degrade the accuracy of the computed quantities. Here we report an implementation of coupled-cluster and equation-of-motion coupled-cluster methods with single and double excitations in single precision. We consider both standard implementation and one using Cholesky decomposition or resolution-of-the-identity representation of electron-repulsion integrals. Numerical tests illustrate that when single precision is used in correlated calculations, the loss of accuracy is insignificant, and pure single-precision implementation can be used for computing energies, analytic gradients, excited states, and molecular properties. In addition to pure single-precision calculations, our implementation allows one to follow a single-precision calculation by cleanup iterations, fully recovering double-precision results while retaining significant savings.

20.
J Phys Chem A ; 122(11): 3066-3075, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29465999

RESUMO

Effective core potential (ECP) integrals are among the most difficult one-electron integrals to calculate due to the projection operators. The radial part of these operators may include r0, r-1, and r-2 terms. For the r0 terms, we exploit a simple analytic expression for the fundamental projected integral to derive new recurrence relations and upper bounds for ECP integrals. For the r-1 and r-2 terms, we present a reconstruction method that replaces these terms by a sum of r0 terms and show that the resulting errors are chemically insignificant for a range of molecular properties. The new algorithm is available in Q-Chem 5.0 and is significantly faster than the ECP implementations in Q-Chem 4.4, GAMESS (US) and Dalton 2016.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...