Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(48): 45201-6, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11574543

RESUMO

In response to DNA damage and genotoxic stress, the p53 tumor suppressor triggers either cell cycle arrest or apoptosis. The G(2) arrest after damage is, in part, mediated by the p53 target, 14-3-3final sigma (final sigma). Colorectal tumor cells lacking final sigma are exquisitely sensitive to DNA damage. Here we analyzed the mechanism of this sensitivity in final sigma(-/-) as compared with final sigma(+/+) human colorectal tumor cells. Exposure to adriamycin resulted in rapid apoptosis only in final sigma(-/-) cells. This was further characterized by caspase-3 activation, p21(CIP1) cleavage, and CDK2 activation. Moreover, Bax was rapidly translocated out of the cytoplasm, and cytochrome c was released in final sigma(-/-) cells. Transient adenovirus-mediated reconstitution of final sigma in the final sigma(-/-) cells led to effective rescue of this phenotype and protected cells against apoptosis. The association of final sigma, Bax, and CDK1 in protein complexes may be the basis for this antiapoptotic mechanism. In conclusion, final sigma not only enforces the p53-dependent G(2) arrest but also delays the apoptotic signal transduction.


Assuntos
Apoptose , Fase G2 , Mitose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas/metabolismo , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/fisiologia , Proteínas 14-3-3 , Adenoviridae/genética , Caspase 3 , Caspases/metabolismo , Ciclo Celular , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Grupo dos Citocromos c/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Doxorrubicina/farmacologia , Ativação Enzimática , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Fenótipo , Testes de Precipitina , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2
2.
Biochemistry ; 40(4): 896-903, 2001 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11170410

RESUMO

Calmodulin (CaM) is a small acidic protein essential to calcium-mediated signal transduction. Conformational change driven by calcium binding controls its selective activation of myriad target proteins. In most well characterized cases, both homologous domains of CaM interact with a target protein. However, physiologically separable roles for the two domains were demonstrated by mutants of Paramecium tetraurelia [Kung, C. et al. (1992) Cell Calcium 13, 413], some of which have altered calcium affinities [Jaren, O. R. et al. (2000) Biochemistry 39, 6881]. To determine whether these mutants can associate with canonical targets in a calcium-dependent manner, their ability to bind melittin was assessed using analytical gel permeation chromatography, analytical ultracentrifugation, and fluorescence spectroscopy. The Stokes radius of wild-type PCaM and 11 of the mutants decreased dramatically upon binding melittin in the presence of calcium. Fluorescence spectra and sedimentation velocity studies showed that melittin bound to wild-type PCaM and mutants in a calcium-independent manner. However, there were domain-specific perturbations. Mutations in the N-domain of PCaM did not affect the spectrum of melittin (residue W19) under apo or calcium-saturated conditions, whereas most of the mutations in the C-domain did. These data are consistent with a calcium-dependent model of sequential target association whereby melittin (i) binds to the C-domain of PCaM in the absence of calcium, (ii) remains associated with the C-domain upon calcium binding to sites III and IV, and (iii) subsequently binds to the N-domain upon calcium binding to sites I and II of CaM, causing tertiary collapse.


Assuntos
Cálcio/fisiologia , Calmodulina/deficiência , Calmodulina/genética , Canais Iônicos/deficiência , Canais Iônicos/genética , Meliteno/metabolismo , Mutação , Paramecium/genética , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Cromatografia em Gel , Canais Iônicos/metabolismo , Meliteno/química , Modelos Moleculares , Dados de Sequência Molecular , Paramecium/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Espectrometria de Fluorescência , Triptofano/química , Ultracentrifugação
3.
J Biol Chem ; 275(30): 23181-6, 2000 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-10781590

RESUMO

The cyclin-dependent kinase inhibitor p21(cip1) regulates cell cycle progression, DNA replication, and DNA repair by binding to specific cellular proteins through distinct amino- and carboxyl-terminal protein binding motifs. We have identified a novel human gene, CARB (CIP-1-associated regulator of cyclin B), whose product interacts with the p21 carboxyl terminus. Immunocytochemical analysis demonstrates that the CARB protein is perinuclear and predominantly associated with the centrosome and mitotic spindle poles. In addition, CARB is also able to associate with cyclin B1, a key regulator of mitosis. However, cyclin B1-CARB complex formation occurs preferentially in the absence of p21. Unexpectedly, overexpression of CARB is associated with a growth-inhibitory and ultimately lethal phenotype in p21(-/-) cells but not in p21(+/+) cells. These data identify a novel mechanism that may underlie the effects of p21 in the G(2)/M phases of the cell cycle.


Assuntos
Ciclina B/metabolismo , Ciclinas/metabolismo , Fase G2 , Clonagem Molecular , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA