Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 100: 296-305, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31568978

RESUMO

Millions of tons of plastic are produced annually, but less than 10% are reported to be recycled. This work sets out to transform environmental plastic (polyethylene terephthalate - PET) waste into aerogels for high-value engineering applications, primarily to enhance the monetary incentive in recycling plastics. Coating techniques, using silicone ceramic (SCC) and (3-aminopropyl)triethoxysilane (APS, or APTES) solutions, are successfully devised to enhance the thermal stability and CO2 adsorption capability of rPET aerogel. The rPET/SCC aerogel exhibits improved thermal stability (up to 600 °C), enhanced thermal insulation (thermal conductivity Kavg = [31.8-34.9] mW/m·K), hydrophobic characteristics (up to 144.7° in contact angle) and enhanced rigidity (Young modulus Eavg = [4.5-124.8] kPa), while maintaining an ultra-low density (ρa = [14-62] g/cm3) and a high porosity (Φavg = [95.6-99.0]%). Moreover, the amine-functionalised rPET aerogel achieves a CO2 adsorption capacity of up to 0.44 mmol CO2/g, superior to several commercial physio-sorbents. These promising results obtained demonstrate that the rPET aerogel is a versatile material suitable for a wide variety of high-value engineering applications, including thermal insulation and direct CO2 capture applications.


Assuntos
Polietilenotereftalatos , Reciclagem , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...