Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(46): 53371-53381, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935594

RESUMO

Establishing an effective metal-free photocatalyst for sustainable applications remains a huge challenge. Herein, we developed ultrathin oxygen-doped g-C3N4 nanosheets with carbon defects (OCvN) photocatalyst via a facile gas bubble template-assisted thermal copolymerization method. A series of OCvN with different dopant amounts ranging from 0 to 10% were synthesized and used as photocatalysts under illumination of low-power (2 × 18 W, 0.18 mW/cm2) and commercially available energy-saving light bulbs. Upon testing for photocatalytic Escherichia coli inactivation, the best-performing sample, OCvN-3, demonstrated an astonishing disinfection activity of over 7-log reduction after 3 h of illumination, boasting an 18-fold improvement in its antibacterial activity compared to that of pristine g-C3N4. The enhanced performance was attributed to the synergistic effects of increased surface area, extended visible light harvesting, improved electronic conductivity, and ultralow resistance to charge transfer. This study successfully introduced a green photocatalyst that demonstrates the most effective disinfection performance ever recorded among metal-free g-C3N4 materials. Its disinfection capabilities are comparable to those of metal-based photocatalysts when they are exposed to low-power light.

2.
Phys Chem Chem Phys ; 24(18): 11124-11130, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35474006

RESUMO

Surface defect engineering on the nanoscale has attracted extensive research attention lately; however, its role in modulating the properties and catalytic performance of a semiconducting material has not been comprehensively covered. Here, we systematically unraveled the effect of defect engineering towards textural, electronic and optical properties of graphitic carbon nitride (g-C3N4), as well as its photocatalytic mechanism of CO2 reduction using first-principle calculations by density functional theory through the introduction of various defect sites. Among the five unique atoms in g-C3N4, the vacancy site was found to be the most feasible at the two-coordinated nitrogen, N2. By initiating N2 point defects, an asymmetric electron density distribution was engendered around the vacancy region, which resulted in an evolution of semiconducting properties. We also discovered an improved charge separation efficiency and CO2 adsorption affinity in g-C3N4, which rendered a more thermodynamically feasible pathway for CO2 reduction to CO, CH3OH and CH4 fuels. This theoretical finding is hoped to shed light on the importance of the defect engineering strategy towards photocatalytic enhancement in g-C3N4.

3.
ChemSusChem ; 15(14): e202200471, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35447013

RESUMO

Photocatalytic reduction of CO2 has attracted enormous interest as a sustainable and renewable source of energy. In the past decade, numerous bulk-type semiconductors have been developed, but the existing designs suffer many limitations, namely rapid recombination of charge carriers and weak light absorption ability. Herein, a bottom-up approach was developed to design atomically thin sulfur-doped Bi2 WO6 perovskite nanosheets (S-BWO) with improved reduction ability, extended visible light absorption, prolonged lifetime of charge carriers, enhanced adsorption of CO2 , and reduced work function. Compared with pristine Bi2 WO6 (P-BWO), S-BWO nanosheets exhibited a 3-fold improvement in photocatalytic reduction of CO2 under simulated sunlight irradiation. Experimental studies and density functional theory calculations revealed the synergistic roles of atomically thin nanosheets and S atoms in promoting photocatalytic efficiency.

4.
Sci Rep ; 12(1): 1927, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121781

RESUMO

ZnIn2S4 (ZIS) is an efficient photocatalyst for solar hydrogen (H2) generation from water splitting owing to its suitable band gap, excellent photocatalytic behaviour and high stability. Nevertheless, modifications are still necessary to further enhance the photocatalytic performance of ZIS for practical applications. This has led to our interest in exploring phosphorus doping on ZIS for photocatalytic water splitting, which has not been studied till date. Herein, phosphorus-doped ZnIn2S4 (P-ZIS) was modelled via Density Functional Theory to investigate the effects of doping phosphorus on the structural and electronics properties of ZIS as well as its performance toward photocatalytic water splitting. This work revealed that the replacement of S3 atom by substitutional phosphorus gave rise to the most stable P-ZIS structure. In addition, P-ZIS was observed to experience a reduction in band gap energy, an upshift of valence band maximum (VBM), an increase in electron density near VBM and a reduction of H* adsorption-desorption barrier, all of which are essential for the enhancement of the hydrogen evolution reaction. In overall, detailed theoretical analysis carried out in this work could provide critical insights towards the development of P-ZIS-based photocatalysts for efficient H2 generation via solar water splitting.

5.
Chem Rev ; 122(3): 3879-3965, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34968051

RESUMO

Photocatalysis is a perennial solution that promises to resolve deep-rooted challenges related to environmental pollution and energy deficit through harvesting the inexhaustible and renewable solar energy. To date, a cornucopia of photocatalytic materials has been investigated with the research wave presently steered by the development of novel, affordable, and effective metal-free semiconductors with fascinating physicochemical and semiconducting characteristics. Coincidentally, the recently emerged red phosphorus (RP) semiconductor finds itself fitting perfectly into this category ascribed to its earth abundant, low-cost, and metal-free nature. More notably, the renowned red allotrope of the phosphorus family is spectacularly bestowed with strengthened optical absorption features, propitious electronic band configuration, and ease of functionalization and modification as well as high stability. Comprehensively detailing RP's roles and implications in photocatalysis, this review article will first include information on different RP allotropes and their chemical structures, followed by the meticulous scrutiny of their physicochemical and semiconducting properties such as electronic band structure, optical absorption features, and charge carrier dynamics. Besides that, state-of-the-art synthesis strategies for developing various RP allotropes and RP-based photocatalytic systems will also be outlined. In addition, modification or functionalization of RP with other semiconductors for promoting effective photocatalytic applications will be discussed to assess its versatility and feasibility as a high-performing photocatalytic system. Lastly, the challenges facing RP photocatalysts and future research directions will be included to propel the feasible development of RP-based systems with considerably augmented photocatalytic efficiency. This review article aspires to facilitate the rational development of multifunctional RP-based photocatalytic systems by widening the cognizance of rational engineering as well as to fine-tune the electronic, optical, and charge carrier properties of RP.


Assuntos
Recuperação e Remediação Ambiental , Energia Solar , Catálise , Fósforo , Semicondutores
6.
Chemistry ; 27(9): 3085-3090, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33263935

RESUMO

Universal access to clean water has been a global ambition over the years. Photocatalytic water disinfection through advanced oxidation processes has been regarded as one of the promising methods for breaking down microbials. The forefront of this research focuses on the application of metal-free photocatalysts for disinfection to prevent secondary pollution. Graphitic carbon nitride (g-C3 N4 ) has achieved instant attention as a metal-free and visible-light-responsive photocatalyst for various energy and environmental applications. However, the photocatalytic efficiency of g-C3 N4 is still affected by its rapid charge recombination and sluggish electron-transfer kinetics. In this contribution, two-dimensionally protonated g-C3 N4 was employed as metal-free photocatalyst for water treatment and demonstrated 100 % of Escherichia coli within 4 h under irradiation with a 23 W light bulb. The introduction of protonation can modulate the surface charge of g-C3 N4 ; this enhances its conductivity and provides a "highway" for the delocalization of electrons. This work highlights the potential of conjugated polymers in antibacterial application.


Assuntos
Desinfecção/métodos , Escherichia coli/química , Escherichia coli/efeitos da radiação , Grafite/química , Grafite/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos da radiação , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Prótons , Catálise/efeitos da radiação , Elétrons , Grafite/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Nitrogênio/farmacologia , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...