Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroinform ; 15: 691918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393747

RESUMO

The acquisition of high quality maps of gene expression in the rodent brain is of fundamental importance to the neuroscience community. The generation of such datasets relies on registering individual gene expression images to a reference volume, a task encumbered by the diversity of staining techniques employed, and by deformations and artifacts in the soft tissue. Recently, deep learning models have garnered particular interest as a viable alternative to traditional intensity-based algorithms for image registration. In this work, we propose a supervised learning model for general multimodal 2D registration tasks, trained with a perceptual similarity loss on a dataset labeled by a human expert and augmented by synthetic local deformations. We demonstrate the results of our approach on the Allen Mouse Brain Atlas (AMBA), comprising whole brain Nissl and gene expression stains. We show that our framework and design of the loss function result in accurate and smooth predictions. Our model is able to generalize to unseen gene expressions and coronal sections, outperforming traditional intensity-based approaches in aligning complex brain structures.

2.
Front Neuroinform ; 13: 7, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837861

RESUMO

[This corrects the article DOI: 10.3389/fninf.2018.00084.].

3.
Front Neuroinform ; 12: 84, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546301

RESUMO

Despite vast numbers of studies of stained cells in the mouse brain, no current brain atlas provides region-by-region neuron counts. In fact, neuron numbers are only available for about 4% of brain of regions and estimates often vary by as much as 3-fold. Here we provide a first 3D cell atlas for the whole mouse brain, showing cell positions constructed algorithmically from whole brain Nissl and gene expression stains, and compared against values from the literature. The atlas provides the densities and positions of all excitatory and inhibitory neurons, astrocytes, oligodendrocytes, and microglia in each of the 737 brain regions defined in the AMBA. The atlas is dynamic, allowing comparison with previously reported numbers, addition of cell types, and improvement of estimates as new data is integrated. The atlas also provides insights into cellular organization only possible at this whole brain scale, and is publicly available.

4.
Front Neuroanat ; 12: 83, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405363

RESUMO

The mouse brain is the most extensively studied brain of all species. We performed an exhaustive review of the literature to establish our current state of knowledge on cell numbers in mouse brain regions, arguably the most fundamental property to measure when attempting to understand a brain. The synthesized information, collected in one place, can be used by both theorists and experimentalists. Although for commonly-studied regions cell densities could be obtained for principal cell types, overall we know very little about how many cells are present in most brain regions and even less about cell-type specific densities. There is also substantial variation in cell density values obtained from different sources. This suggests that we need a new approach to obtain cell density datasets for the mouse brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...