Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 72(1): 69-76, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11084596

RESUMO

Enzymatic peptide synthesis can be carried out efficiently in solid-to-solid reaction mixtures with 10% (w/w) water added to a mixture of substrates. The final reaction mass contains >/=80% (by weight) of product. This article deals with acid-base effects in such reaction mixtures and the consequences for the enzyme. In the Thermoase-catalyzed synthesis of Z-Asp-Phe-OMe, the reaction rate is strongly dependent on the amount of basic salts added to the system. The rate increases 20 times, as the KHCO(3) or K(2)CO(3) added is raised 2.25-fold from an amount equimolar to the Phe-OMe. HCL starting material. With further increases in KHCO(3) addition, the initial rate remains at the maximum, but with K(2)CO(3) it drops sharply. Addition of NaHCO(3) is less effective, but rates are faster if more water is used. With >1.5 equivalents of basic salt, the final yield of the reaction decreases. Similar effects are observed when thermolysin catalyzes the same reaction, or Z-Gln-Leu-NH(2) synthesis. These effects can be rationalized using a model estimating the pH of these systems, taking into account the possible formation of up to ten different solid phases.


Assuntos
Aspartame/síntese química , Endopeptidases , Peptídeos/síntese química , Aspartame/metabolismo , Bacillus/enzimologia , Biotecnologia/métodos , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Cinética , Peptídeos/metabolismo , Sais
2.
Biotechnol Prog ; 16(6): 1129-31, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11101345

RESUMO

We present the first report of enzymatic catalysis in an ionic liquid. The virtually nonexistent vapor pressure makes ionic liquids an exciting new alternative for enzyme-catalyzed syntheses in environmentally friendly environments. Z-aspartame was synthesized in a thermolysin-catalyzed reaction of carbobenzoxy-L-aspartate and L-phenylalanine methyl ester hydrochloride in 1-butyl-3-methylimidazolium hexafluorophosphate (BP6). Ionic liquids such as BP6 are thermally stable and have a remarkable range of temperatures over which they remain liquid (300 degrees C). With an initial rate of 1.2 +/- 0.1 nmol min(-)(1) mg(-)(1), we observed a competitive rate in comparison to that of enzymatic synthesis in organic solvent. Additionally, the enzyme exhibits outstanding stability, which would normally require immobilization.


Assuntos
Aspartame/síntese química , Aspartame/metabolismo , Catálise , Íons , Cinética , Compostos Orgânicos/química , Solventes/química
3.
Biotechnol Bioeng ; 69(6): 633-8, 2000 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-10918138

RESUMO

This is a comparative study of the performance of thermolysin for enzymatic peptide synthesis by reversed hydrolysis in several different reaction systems. Z-Gln-Leu-NH(2) was synthesized in acetonitrile containing 5% water (with various catalyst preparation methods) as well as by the "solid-to-solid" and frozen aqueous methods. Reaction rates (values in nanomoles per minute per milligram) in acetonitrile depended significantly on the method of addition of enzyme: (a) direct suspension in the reaction mixture as freeze-dried powders gave 60 to 95; (b) addition as an aqueous solution, so that enzyme precipitates on mixing with acetonitrile, gave 230; (c) addition as an aqueous suspension gave a remarkable increase in reaction rates (up to 780); (d) immobilized enzymes (adsorbed at saturating loading on celite, silica, Amberlite XAD-7, or polypropylene, then dried by propanol rinsing) all gave <230. It is postulated that, starting with the enzyme already in the form of solid particles in aqueous buffer, there is a minimum chance of alteration of its optimal conformation during transfer to the organic medium. For solid-to-solid synthesis with 10% water content we found initial rates of 670 under optimized conditions. In frozen aqueous synthesis, rates were <10. Equilibrium yields were always around 60% in low water organic solvent, whereas they were found to >80% in the aqueous systems studied.


Assuntos
Bioquímica/métodos , Peptídeos/síntese química , Termolisina/metabolismo , Peptídeos/metabolismo , Solventes/química , Termolisina/química , Água
4.
Biotechnol Bioeng ; 63(3): 316-21, 1999 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-10099611

RESUMO

A systematic study of thermolysin-catalyzed solid-to-solid peptide synthesis using Z-Gln and Leu-NH2 as model substrates was carried out. The aim was to extend the kinetic knowledge of this new reaction system involving highly concentrated substrate mixtures with little water (10% to 20% w/w). Preheating of the substrates, and ultrasonic treatment, as described in the literature, had no significant effect on our system. The formation of a third compound, the salt of the two substrates, was discovered during melting point experiments. This was associated with a very strong dependence of kinetics on the exact substrate ratio (e.g., twofold higher initial rate with 60% Leu-NH2 and 40% Z-Gln than with the equimolar substrate ratio). A model was developed to show how the composition and pH of the liquid phase depends on the substrate ratio, and seemed to explain the experimental rates. In addition, the influences of different mixing and water distribution methods are described. Finally, we can now summarize the major effects of the reaction system as a starting point for further research and scale-up studies.


Assuntos
Peptídeos/síntese química , Termolisina , Glutamina , Indicadores e Reagentes , Cinética , Leucina , Especificidade por Substrato , Termolisina/metabolismo , Ultrassom
5.
Biotechnol Bioeng ; 59(1): 68-72, 1998 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-10099315

RESUMO

We have studied a thermolysin-catalyzed solid-to-solid dipeptide synthesis using equimolar amounts of Z-Gln-OH and H-Leu-NH2 as model substrates. The high substrate concentrations make this an effective alternative to enzymatic peptide synthesis in organic solvents. Water content was varied in the range of 0 to 600 mL water per mol substrate and enzyme concentration in the range of 0.5 to 10 g/mol of substrates. High yields around 80% conversion and initial rates from 5 to 20 mmol s-1 kg-1 were achieved. The initial rate increases 10-fold on reducing the water content, to reach a pronounced optimum at 40 mL water per mol substrate. Below this, the rate falls to much lower values in a system with no added water, and to zero in a rigorously dried system. This behavior is discussed in terms of two factors: At higher water contents the system is mass transfer limited (as shown by varying enzyme content), and the diffusion distances required vary. At low water levels, effects reflect the stimulation of the enzymatic activity by water.


Assuntos
Peptídeos/síntese química , Termolisina/metabolismo , Biotecnologia/métodos , Glutamina , Indicadores e Reagentes , Cinética , Leucina , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...