Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1690: 463804, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36689803

RESUMO

Monolithic poly(2-vinylnaphthalene-co-divinylbenzene) columns were introduced, for the first time, and were evaluated as the separation media for nano-liquid chromatography (nano-LC). These columns were prepared by in-situ polymerization of 2-vinylnaphthalene (2-VNA) as the functional monomer and divinylbenzene (DVB) as the crosslinker in a fused silica capillary column of 50 µm i.d. Various porogenic solvents, including tetrahydrofuran (THF), dodecanol and toluene were used for morphology optimization. Final monolithic column (referred to as VNA column) was characterized by using scanning electron microscopy (SEM) and chromatographic analyses. Alkylbenzenes (ABs), and polyaromatic hydrocarbons (PAHs) were separated using the VNA column while the column offered excellent hydrophobic and π-π interactions under reversed-phase conditions. Theoretical plates number up to 41,200 plates/m in isocratic mode for ethylbenzene could be achieved. The potential of the final VNA column was demonstrated with a gradient elution in the  separation of six intact proteins, including ribonuclease A (RNase A), cytochrome C (Cyt C), lysozyme (Lys), ß-lactoglobulin (ß-lac), myoglobin (My) and α-chymotrypsinogen (α-chym) in nano LC system. The column was then applied to the peptide analysis of trypsin digested cytochrome C, allowing a high peak capacity up to 1440 and the further proteomics analysis of COS-7 cell line was attempted applying the final monolithic column in nano-LC UV system.


Assuntos
Citocromos c , Proteômica , Cromatografia Líquida/métodos , Compostos de Vinila/química
2.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408705

RESUMO

A new feature of hydrophobic fumed silica nanoparticles (HFSNPs) when they apply to the preparation of monolithic nano-columns using narrow monolithic fused silica capillary columns (e.g., 50-µm inner diameter) was presented. The monolithic nano-columns were synthesized by an in-situ polymerization using butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) at various concentrations of AEROSIL®R972, called HFSNPs. Dimethyl formamide (DMF) and water were used as the porogenic solvents. These columns (referred to as HFSNP monoliths) were successfully characterized by using scanning electron microscopy (SEM) and reversed-phase nano-LC using alkylbenzenes and polyaromatic hydrocarbons as solute probes. The reproducibility values based on run-to-run, column-to-column and batch-to-batch were found as 2.3%, 2.48% and 2.99% (n = 3), respectively. The optimized column also indicated promising hydrophobic interactions under reversed-phase conditions, while the feasibility of the column allowed high efficiency and high throughput nano-LC separations. The potential of the final HFSNP monolith in relation to intact protein separation was successfully demonstrated using six intact proteins, including ribonuclease A, cytochrome C, carbonic anhydrase isozyme II, lysozyme, myoglobin, and α-chymotrypsinogen A in nano-LC. The results showed that HFSNP-based monolithic nanocolumns are promising materials and are powerful tools for sensitive separations.


Assuntos
Nanopartículas , Dióxido de Silício , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Nanopartículas/química , Proteínas/química , Reprodutibilidade dos Testes , Dióxido de Silício/química
3.
Electrophoresis ; 42(24): 2637-2646, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34213776

RESUMO

In this study, graphene oxide-octadecylsilane incorporated monolithic nano-columns were developed for protein analysis by nano liquid chromatography (nano LC). The monolithic column with 100 µm id was first prepared by an in situ polymerization using ethylene dimethacrylate (EDMA), 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl), and methacryloyl graphene oxide nanoparticles (MGONPs). MGONPs were synthesized by the treatment of 3-(trimethoxysilyl)propylmethacrylate (TMSPM) and GO. Tetrahydrofuran (THF) and dodecanol were used as the porogenic solvent. The resulting column was functionalized by dimethyloctadecylch lorosilane (DODCS) for the enhancement of hydrophobicity. The functionalization greatly improved the baseline separation of hydrophobic compounds such as polyaromatic hydrocarbons (PAHs). The optimized monolith with respect to total polymerization mixture was characterized by using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) X-ray diffraction (XRD) and chromatographic analyses. The blank monoliths without functionalization exhibited poor separation while a good separation performance of MGONPs functionalized monoliths was achieved. The monolith with 100 µm id was evaluated in protein separation in nano LC using RNase A, Cytochrome C, Lysozyme, Trypsin, and Ca isozyme II as the test proteins. It was shown that protein separation mechanism was based on large π-system of GO and hydrophobicity of the monolithic structure. Theoretical plates number up to 57 600 plates were achieved. The nano-column with 50 µm id was also prepared using the same polymerization mixture under the same chemical conditions. These nano-columns were employed for protein separation by nano LC, and the dependence of both nano-column performance on the internal diameter was also discussed.


Assuntos
Cromatografia Líquida , Grafite , Proteínas , Silanos , Metacrilatos , Nanoestruturas , Proteínas/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...