Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 15: 1207202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390414

RESUMO

Differences in corticocerebral structure and function between males and females and their effects on behavior and the prevalence of various neuropsychiatric disorders have been considered as a fundamental topic in various fields of neuroscience. Recent studies on working memory (WM) reported the impact of sex on brain connectivity patterns, which reflect the important role of functional connectivity in the sex topic. Working memory, one of the most important cognitive tasks performed by regions of the PFC, can provide evidence regarding the presence of a difference between males and females. The present study aimed to assess sex differences in brain functional connectivity during working memory-related tasks by using functional near-infrared spectroscopy (fNIRS). In this regard, nine males and nine females completed a dual n-back working memory task with two target inputs of color and location stimuli in three difficulty levels (n = 0, 1, 2). Functional connectivity matrices were extracted for each subject for each memory load level. Females made less errors than males while spending more time performing the task for all workload levels except in 0-back related to the color stimulus, where the reaction time of females was shorter than males. The results of functional connectivity reveal the inverse behavior of two hemispheres at different memory workload levels between males and females. In the left hemisphere, males exhibited stronger connectivity compared to the females, while stronger connectivity was observed in the females' right hemisphere. Furthermore, an inverse trend was detected in the channel pairs with significant connectivity in the right hemisphere of males (falling) and females (rising) by enhancing working memory load level. Considering both behavioral and functional results for two sexes demonstrated a better performance in females due to the more effective use of the brain. The results indicate that sex affects functional connectivity between different areas in both hemispheres of the brain during cognitive tasks of varying difficulty levels although the general impression is that spatial capabilities are considered as a performance of the brain's right hemisphere. These results reinforce the presence of a sex effect in the functional imaging studies of hemodynamic function and emphasize the importance of evaluating brain network connectivity for achieving a better scientific understanding of sex differences.

2.
Front Hum Neurosci ; 16: 883905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923750

RESUMO

Functional near infrared spectroscopy (fNIRS) has been gaining increasing interest as a practical mobile functional brain imaging technology for understanding the neural correlates of social cognition and emotional processing in the human prefrontal cortex (PFC). Considering the cognitive complexity of human-robot interactions, the aim of this study was to explore the neural correlates of emotional processing of congruent and incongruent pairs of human and robot audio-visual stimuli in the human PFC with fNIRS methodology. Hemodynamic responses from the PFC region of 29 subjects were recorded with fNIRS during an experimental paradigm which consisted of auditory and visual presentation of human and robot stimuli. Distinct neural responses to human and robot stimuli were detected at the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) regions. Presentation of robot voice elicited significantly less hemodynamic response than presentation of human voice in a left OFC channel. Meanwhile, processing of human faces elicited significantly higher hemodynamic activity when compared to processing of robot faces in two left DLPFC channels and a left OFC channel. Significant correlation between the hemodynamic and behavioral responses for the face-voice mismatch effect was found in the left OFC. Our results highlight the potential of fNIRS for unraveling the neural processing of human and robot audio-visual stimuli, which might enable optimization of social robot designs and contribute to elucidation of the neural processing of human and robot stimuli in the PFC in naturalistic conditions.

3.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891088

RESUMO

Diagnosis of most neuropsychiatric disorders relies on subjective measures, which makes the reliability of final clinical decisions questionable. The aim of this study was to propose a machine learning-based classification approach for objective diagnosis of three disorders of neuropsychiatric or neurological origin with functional near-infrared spectroscopy (fNIRS) derived biomarkers. Thirteen healthy adolescents and sixty-seven patients who were clinically diagnosed with migraine, obsessive compulsive disorder, or schizophrenia performed a Stroop task, while prefrontal cortex hemodynamics were monitored with fNIRS. Hemodynamic and cognitive features were extracted for training three supervised learning algorithms (naïve bayes (NB), linear discriminant analysis (LDA), and support vector machines (SVM)). The performance of each algorithm in correctly predicting the class of each participant across the four classes was tested with ten runs of a ten-fold cross-validation procedure. All algorithms achieved four-class classification performances with accuracies above 81% and specificities above 94%. SVM had the highest performance in terms of accuracy (85.1 ± 1.77%), sensitivity (84 ± 1.7%), specificity (95 ± 0.5%), precision (86 ± 1.6%), and F1-score (85 ± 1.7%). fNIRS-derived features have no subjective report bias when used for automated classification purposes. The presented methodology might have significant potential for assisting in the objective diagnosis of neuropsychiatric disorders associated with frontal lobe dysfunction.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte , Adolescente , Teorema de Bayes , Biomarcadores , Análise Discriminante , Humanos , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
Clin EEG Neurosci ; 53(2): 114-123, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34213973

RESUMO

The readiness potential (RP), which is a slow negative electrical brain potential that occurs before voluntary movement, can be interpreted as a measure of intrinsic brain activity originating from self-regulating mechanisms. Early and late components of the RP may indicate clinical-neurophysiological features such as motivation, preparation, intention, and initiation of voluntary movements. In the present study, we hypothesized that electrical pain stimuli modulate the preparatory brain activity for movement. The grand average evoked potentials were measured at sensory motor regions with EEG during an experimental protocol consisting of painful and nonpainful stimuli. Our results demonstrated that painful stimuli were preceded by an enhanced RP when compared to non-painful stimuli at the Cz channel (p < 0.05). Furthermore, the mean amplitude of the RP at the early phase was significantly higher for the painful stimuli when compared to the non-painful stimuli (p < 0.05). Our results indicate that electrical painful stimuli, which can be considered as an unpleasant and stressful condition, modulate the motor preparation at sensory motor regions to a different extent when compared to non-painful electrical stimuli. Since early component of the RP represents cortical activation due to anticipation of the stimuli and the allocation of attentional resources, our results suggest that painful stimuli may affect the motor preparation processes and the prediction of the movement at the cortical level.


Assuntos
Mapeamento Encefálico , Variação Contingente Negativa , Encéfalo , Eletroencefalografia , Humanos , Movimento , Dor
5.
J Neural Eng ; 18(5)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34479222

RESUMO

Background.The gold standard for diagnosing impulsivity relies on clinical interviews, behavioral questionnaires and rating scales which are highly subjective.Objective.The aim of this study was to develop a functional near infrared spectroscopy (fNIRS) based classification approach for correct identification of impulsive adolescents. Taking into account the multifaceted nature of impulsivity, we propose that combining informative features from clinical, behavioral and neurophysiological domains might better elucidate the neurobiological distinction underlying symptoms of impulsivity.Approach. Hemodynamic and behavioral information was collected from 38 impulsive adolescents and from 33 non-impulsive adolescents during a Stroop task with concurrent fNIRS recordings. Connectivity-based features were computed from the hemodynamic signals and a neural efficiency metric was computed by fusing the behavioral and connectivity-based features. We tested the efficacy of two commonly used supervised machine-learning methods, namely the support vector machines (SVM) and artificial neural networks (ANN) in discriminating impulsive adolescents from their non-impulsive peers when trained with multi-domain features. Wrapper method was adapted to identify the informative biomarkers in each domain. Classification accuracies of each algorithm were computed after 10 runs of a 10-fold cross-validation procedure, conducted for 7 different combinations of the 3-domain feature set.Main results.Both SVM and ANN achieved diagnostic accuracies above 90% when trained with Wrapper-selected clinical, behavioral and fNIRS derived features. SVM performed significantly higher than ANN in terms of the accuracy metric (92.2% and 90.16%, respectively,p= 0.005).Significance.Preliminary findings show the feasibility and applicability of both machine-learning based methods for correct identification of impulsive adolescents when trained with multi-domain data involving clinical interviews, fNIRS based biomarkers and neuropsychiatric test measures. The proposed automated classification approach holds promise for assisting the clinical practice of diagnosing impulsivity and other psychiatric disorders. Our results also pave the path for a computer-aided diagnosis perspective for rating the severity of impulsivity.


Assuntos
Comportamento Impulsivo , Espectroscopia de Luz Próxima ao Infravermelho , Adolescente , Algoritmos , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte
6.
J Clin Neurosci ; 90: 144-151, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275540

RESUMO

The role of exercise on pain modulatory mechanism of the prefrontal areas is not clear. We aimed to determine the effects of exercise on functional activity of the prefrontal cortex in patients with knee osteoarthritis (OA) with chronic pain and to assess the relationships between changes in clinical variables and cortical hemodynamics with exercise via functional near-infrared spectroscopy (fNIRS). Fifteen patients with knee OA with chronic pain were included. All participants attended an exercise program 3 times a week for 6 weeks. Pain during activity was assessed by visual analogue scale (VAS). Pain catastrophization, kinesiophobia and functionality were also measured. Brain hemodynamic activity was assessed with a 47-channel fNIRS system before and after the exercise. Pain, pain catastrophization, kinesiophobia and functionality scores significantly improved (p < 0.05) while functional activity of the dorsolateral prefrontal cortex (DLPFC) during painful stimuli was significantly reduced after exercise program (p < 0.05). Change in cortical hemodynamic activity within the DLPFC was significantly correlated with change in pain perception (R = 0.54, p < 0.05) and pain catastrophization scores (R = 0.44, p < 0.05). Exercise resulted in improvements in clinical assessments of pain severity and pain catastrophization which was accompanied by alterations in prefrontal cortex activation. We provided evidence about the pain modulatory effects of exercise at cortical level which is correlated with clinical improvements in patients with chronic pain. We demonstrate the feasibility and potential of fNIRS methodology for i) elucidating the neural mechanisms underlying chronic and stimulus evoked pain, and ii) exploring the effect of treatment methods on brain functionality.


Assuntos
Exercício Físico/fisiologia , Osteoartrite do Joelho/reabilitação , Córtex Pré-Frontal/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Idoso , Dor Crônica/fisiopatologia , Dor Crônica/reabilitação , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem
7.
Front Hum Neurosci ; 14: 252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694987

RESUMO

Mental rotation (MR) is a cognitive skill whose neural dynamics are still a matter of debate as previous neuroimaging studies have produced controversial results. In order to investigate the underlying neurophysiology of MR, hemodynamic responses from the prefrontal cortex of 14 healthy subjects were recorded with functional near-infrared spectroscopy (fNIRS) during a novel MR task that had three categorical difficulty levels. Hemodynamic activity strength (HAS) parameter, which reflects the ratio of brain activation during the task to the baseline activation level, was used to assess the prefrontal cortex activation localization and strength. Behavioral data indicated that the MR requiring conditions are more difficult than the condition that did not require MR. The right dorsolateral prefrontal cortex (DLPFC) was found to be active in all conditions and to be the dominant region in the easiest task while more complex tasks showed widespread bilateral prefrontal activation. A significant increase in left DLPFC activation was observed with increasing task difficulty. Significantly higher right DLPFC activation was observed when the incongruent trials were contrasted against the congruent trials, which implied the possibility of a robust error or conflict-monitoring process during the incongruent trials. Our results showed that the right DLPFC is a core region for the processing of MR tasks regardless of the task complexity and that the left DLPFC is involved to a greater extent with increasing task complexity, which is consistent with the previous neuroimaging literature.

8.
Cranio ; 38(2): 99-108, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30048227

RESUMO

Objective: The aim of this study was to investigate the hemodynamic effects of occlusal splint therapy on masseter muscles of patients with myofascial pain accompanied by bruxism with near-infrared spectroscopy (NIRS). Methods: Twenty-four patients were randomly divided into two groups, where the study group (n = 12) received occlusal splint therapy and the control group (n = 12) underwent no therapy. Measurements were categorized into four subgroups: painful or painless control and painful or painless splint. Percent changes in deoxyhemoglobin (Hb), oxyhemoglobin (HbO2), and OXY (HbO2-Hb) values were calculated during a 1-month period. Results: Statistically significant inter-session differences between painful-splint and painful-control groups were detected for NIRS oxygenation parameters, whereas inter-session differences between painless groups were statistically insignificant. Conclusion: The results suggest that occlusal splint usage causes a decrease in hyperemic response, which is indicative of a decrease in masseter muscle contraction strength.


Assuntos
Bruxismo , Placas Oclusais , Manejo da Dor , Bruxismo/complicações , Eletromiografia , Hemodinâmica , Humanos , Músculo Masseter , Dor
9.
J Neural Eng ; 16(2): 026029, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30634177

RESUMO

OBJECTIVE: The aim of this study was to introduce a novel methodology for classification of brain hemodynamic responses collected via functional near infrared spectroscopy (fNIRS) during rest, motor imagery (MI) and motor execution (ME) tasks which involves generating population-level training sets. APPROACH: A 48-channel fNIRS system was utilized to obtain hemodynamic signals from the frontal (FC), primary motor (PMC) and somatosensory cortex (SMC) of ten subjects during an experimental paradigm consisting of MI and ME of various right hand movements. Classification accuracies of random forest (RF), support vector machines (SVM), and artificial neural networks (ANN) were computed at the single subject level by training each classifier with subject specific features, and at the group level by training with features from all subjects for ME versus Rest, MI versus Rest and MI versus ME conditions. The performances were also computed for channel data restricted to FC, PMC and SMC regions separately to determine optimal probe location. MAIN RESULTS: RF, SVM and ANN had comparably high classification accuracies for ME versus Rest (%94, %96 and %98 respectively) and for MI versus Rest (%95, %95 and %98 respectively) when fed with group level feature sets. The accuracy performance of each algorithm in localized brain regions were comparable (>%93) to the accuracy performance obtained with whole brain channels (>%94) for both ME versus Rest and MI versus Rest conditions. SIGNIFICANCE: By demonstrating the feasibility of generating a population level training set with a high classification performance for three different classification algorithms, the findings pave the path for removing the necessity to acquire subject specific training data and hold promise for a novel, real-time fNIRS based BCI system design which will be most effective for application to disease populations for whom obtaining data to train a classification algorithm is not possible.


Assuntos
Interfaces Cérebro-Computador , Imaginação/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adolescente , Algoritmos , Feminino , Humanos , Masculino , Redes Neurais de Computação , Estimulação Luminosa/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...