Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Res J (Isfahan) ; 15(5): 320-326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233651

RESUMO

BACKGROUND: Evidence on the protecting effect of laser on bleached enamel is scarce and controversial. Therefore, we aimed to test for the first time whether different wavelengths of diode laser (810 and 980 nm) can prevent enamel surface corrosion. We also tested for the first time whether such therapeutic effects of laser are limited to specific "laser-activated" bleaching gels or both conventional and laser-activated gels. MATERIALS AND METHODS: In this qualitative experimental study, ten intact human teeth were randomly assigned to five Groups. They were sectioned into twenty buccal/lingual pieces. The groups were: (1) laser-activated gel + 810 nm laser, (2) laser-activated gel + 980 nm laser, (3) conventional gel + 810 nm laser, (4) conventional gel + 980 nm laser, (5) conventional gel only, and (6) laser-activated gel - no irradiation. Buccal sections in each group were subjected to bleaching (according to the stated protocols), and later subjected to field-emission scanning electron microscopy (SEM) and X-ray diffraction (XRD). The lingual pieces were used as "before-treatment" negative controls for XRD. RESULTS: XRD showed an increase in the mineral phase and crystallinity of the enamel in all bleaching groups. This was stronger in the laser-irradiated groups with conventional bleaching agent. SEM showed a complete etched surface in the positive control groups (i.e., bleached using conventional agent). However, all four laser groups had almost intact surfaces. CONCLUSION: This study showed the positive effect of diode laser irradiation at 810 nm or 980 nm wavelengths on the prevention of bleaching damage, irrespective of the activation mechanism of the bleaching gel in use.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26889359

RESUMO

Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-µm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...