Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(20): e2200220, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279945

RESUMO

The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.


Assuntos
Condutividade Elétrica , Porosidade
2.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164197

RESUMO

In this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface. PVDF:PE 50:50 and 20:80 polymer blend nanocomposites with 2 vol% MWCNTs exhibit exceptional electromagnetic interference shielding effectiveness (EMI SE) at 10 min of mixing (13 and 16 dB, respectively-at a thickness of 0.45 mm), when compared to 30 s of mixing (11 and 12 dB, respectively), suggesting the formation of more interconnected MWCNT networks over time. TEM images show that these improved microstructures are concentrated on the PE side of the PVDF/PE interface. A modified version of the "Slim-Fast-Mechanism" is proposed to explain the migration behavior of MWCNTs within the PVDF/PE blend. In this theory, MWCNTs approaching perpendicular to the interface penetrate the PVDF/PE interface, while those approaching in parallel or as MWCNT agglomerates remain trapped. Trapped MWCNTs act as barriers to additional MWCNTs, regardless of geometry. This mechanism is verified via TEM and scanning electron microscopy and suggests the feasibility of localizing MWCNTs at the interface of PVDF/PE blends.

3.
Polymers (Basel) ; 13(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883659

RESUMO

This study intends to reveal the significance of the catalyst to substrate ratio (C/S) on the structural and electrical features of the carbon nanotubes and their polymeric nanocomposites. Here, nitrogen-doped carbon nanotube (N-MWNT) was synthesized via a chemical vapor deposition (CVD) method using three ratios (by weight) of iron (Fe) catalyst to aluminum oxide (Al2O3) substrate, i.e.,1/9, 1/4, and 2/3, by changing the Fe concentration, i.e., 10, 20, and 40 wt.% Fe. Therefore, the synthesized N-MWNT are labelled as (N-MWNTs)10, (N-MWNTs)20, and (N-MWNTs)40. TEM, XPS, Raman spectroscopy, and TGA characterizations revealed that C/S ratio has a significant impact on the physical and chemical properties of the nanotubes. For instance, by increasing the Fe catalyst from 10 to 40 wt.%, carbon purity increased from 60 to 90 wt.% and the length of the nanotubes increased from 1.2 to 2.6 µm. Interestingly, regarding nanotube morphology, at the highest C/S ratio, the N-MWNTs displayed an open-channel structure, while at the lowest catalyst concentration the nanotubes featured a bamboo-like structure. Afterwards, the network characteristics of the N-MWNTs in a polyvinylidene fluoride (PVDF) matrix were studied using imaging techniques, AC electrical conductivity, and linear and nonlinear rheological measurements. The nanocomposites were prepared via a melt-mixing method at various loadings of the synthesized N-MWNTs. The rheological results confirmed that (N-MWNTs)10, at 0.5-2.0 wt.%, did not form any substantial network through the PVDF matrix, thereby exhibiting an electrically insulative behavior, even at a higher concentration of 3.0 wt.%. Although the optical microscopy, TEM, and rheological results confirmed that both (N-MWNTs)20 and (N-MWNTs)40 established a continuous 3D network within the PVDF matrix, (N-MWNTs)40/PVDF nanocomposites exhibited approximately one order of magnitude higher electrical conductivity. The higher electrical conductivity of (N-MWNTs)40/PVDF nanocomposites is attributed to the intrinsic chemical features of (N-MWNTs)40, such as nitrogen content and nitrogen bonding types.

4.
Polymers (Basel) ; 13(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372031

RESUMO

This study intends to show the potential application of a non-recyclable plastic waste towards the development of electrically conductive nanocomposites. Herein, the conductive nanofiller and binding matrix are carbon nanotubes (CNT) and polystyrene (PS), respectively, and the waste material is a plastic foam consisting of mainly vulcanized nitrile butadiene rubber and polyvinyl chloride (PVC). Two nanocomposite systems, i.e., PS/Waste/CNT and PS/CNT, with different compositions were melt-blended in a mixer and characterized for electrical properties. Higher electrical conduction and improved electromagnetic interference shielding performance in PS/Waste/CNT system indicated better conductive network of CNTs. For instance, at 1.0 wt.% CNT loading, the PS/Waste/CNT nanocomposites with the plastic waste content of 30 and 50 wt.% conducted electricity 3 and 4 orders of magnitude higher than the PS/CNT nanocomposite, respectively. More importantly, incorporation of the plastic waste (50 wt.%) reduced the electrical percolation threshold by 30% in comparison with the PS/CNT nanocomposite. The enhanced network of CNTs in PS/Waste/CNT samples was attributed to double percolation morphology, evidenced by optical images and rheological tests, caused by the excluded volume effect of the plastic waste. Indeed, due to its high content of vulcanized rubber, the plastic waste did not melt during the blending process. As a result, CNTs concentrated in the PS phase, forming a denser interconnected network in PS/Waste/CNT samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...