Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(17): 5704-5714, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37021878

RESUMO

Cadmium-based quantum dots (QDs) are amongst the most studied nanomaterials due to their excellent photophysical properties, which can be controlled by controlling the size and/or composition of the nanocrystal. However, the ultraprecise control over size and photophysical properties of Cd-based quantum dots and developing user-friendly techniques to synthesize amino acid-functionalized cadmium-based QDs are still the on-going challenges. In this study, we modified a traditional two-phase synthesis method to synthesize cadmium telluride sulfide (CdTeS) QDs. CdTeS QDs were grown with an extremely slow growth-rate (growth saturation of about 3 days), which allowed us to have an ultraprecise control over size, and as a consequence, the photophysical properties. Also, the composition of CdTeS could be controlled by controlling the precursor ratios. The CdTeS QDs were successfully functionalized with a water-soluble amino acid, L-cysteine, and an amino acid derivative, N-acetyl-L-cysteine. Red-emissive L-cysteine-functionalized CdTeS QDs interacted with yellow-emissive carbon dots. The fluorescence intensity of carbon dots increased upon interaction with CdTeS QDs. This study proposes a mild method that allows to grow QDs with an ultraprecise control over the photophysical properties and shows the implementation of Cd-based QDs to enhance the fluorescence intensity of different fluorophores with fluorescence wavelength at higher energy bands.

2.
ACS Omega ; 7(33): 29297-29305, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36033706

RESUMO

Carbon dots (CDs) are versatile fluorescent nanocrystals with unique optical and structural properties and are commonly used in biosensing, bioimaging, and biomolecule tagging studies. However, fluorescence of CDs is brightest in the wavelength range of 430-530 nm, which overlaps with the autofluorescence range of many eukaryotic cells and makes CDs impractical for in vivo and in vitro imaging studies. Thus, the design of yellow-red emissive CDs with high quantum yield is of importance. In this study, the quantum yield of traditional yellow emissive CDs was enhanced by two different methods: (1) the surface of traditional yellow emissive CDs passivated with a biomolecule, urea, through easy, rapid, inexpensive microwave assisted synthesis methods and (2) a fluorescent biomolecule, aflatoxin B1, used as an energy donor for yellow emissive CDs. In the first method, the quantum yield of the CDs was enhanced to 51%. In the second method, an efficient energy transfer (above 40%) from aflatoxin B1 to the CDs was observed. Our study showed that highly luminescent yellow emissive CDs can be synthesized by simple, rapid microwave assisted synthesis methods, and these CDs are potential candidates to sense aflatoxin B1. Furthermore, our results indicated that Aflatoxin B1 can be considered as an emission booster for CDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...