Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transportation (Amst) ; 49(2): 445-466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33654331

RESUMO

Researchers have improved travel demand forecasting methods in recent decades but invested relatively little to understand their accuracy. A major barrier has been the lack of necessary data. We compiled the largest known database of traffic forecast accuracy, composed of forecast traffic, post-opening counts and project attributes for 1291 road projects in the United States and Europe. We compared measured versus forecast traffic and identified the factors associated with accuracy. We found measured traffic is on average 6% lower than forecast volumes, with a mean absolute deviation of 17% from the forecast. Higher volume roads, higher functional classes, shorter time spans, and the use of travel models all improved accuracy. Unemployment rates also affected accuracy-traffic would be 1% greater than forecast on average, rather than 6% lower, if we adjust for higher unemployment during the post-recession years (2008 to 2014). Forecast accuracy was not consistent over time: more recent forecasts were more accurate, and the mean deviation changed direction. Traffic on projects that opened from the 1980s through early 2000s was higher on average than forecast, while traffic on more recent projects was lower on average than forecast. This research provides insight into the degree of confidence that planners and policy makers can expect from traffic forecasts and suggests that we should view forecasts as a range of possible outcomes rather than a single expected outcome. Supplementary Information: The online version contains supplementary material available at 10.1007/s11116-021-10182-8.

2.
Sci Adv ; 5(5): eaau2670, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31086811

RESUMO

This research examines whether transportation network companies (TNCs), such as Uber and Lyft, live up to their stated vision of reducing congestion in major cities. Existing research has produced conflicting results and has been hampered by a lack of data. Using data scraped from the application programming interfaces of two TNCs, combined with observed travel time data, we find that contrary to their vision, TNCs are the biggest contributor to growing traffic congestion in San Francisco. Between 2010 and 2016, weekday vehicle hours of delay increased by 62% compared to 22% in a counterfactual 2016 scenario without TNCs. The findings provide insight into expected changes in major cities as TNCs continue to grow, informing decisions about how to integrate TNCs into the existing transportation system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...