Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Antimicrob Agents ; 63(1): 107048, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061419

RESUMO

Tuberculous meningitis (TB meningitis) is the most devastating form of tuberculosis (TB) and there is a critical need to optimize treatment. Linezolid is approved for multidrug resistant TB and has shown encouraging results in retrospective TB meningitis studies, with several clinical trials underway assessing its additive effects on high-dose (35 mg/kg/day) or standard-dose (10 mg/kg/day) rifampin-containing regimens. However, the efficacy of adjunctive linezolid to rifampin-containing first-line TB meningitis regimens and the tissue pharmacokinetics (PK) in the central nervous system (CNS) are not known. We therefore conducted cross-species studies in two mammalian (rabbits and mice) models of TB meningitis to test the efficacy of linezolid when added to the first-line TB regimen and measure detailed tissue PK (multicompartmental positron emission tomography [PET] imaging and mass spectrometry). Addition of linezolid did not improve the bactericidal activity of the high-dose rifampin-containing regimen in either animal model. Moreover, the addition of linezolid to standard-dose rifampin in mice also did not improve its efficacy. Linezolid penetration (tissue/plasma) into the CNS was compartmentalized with lower than previously reported brain and cerebrospinal fluid (CSF) penetration, which decreased further two weeks after initiation of treatment. These results provide important data regarding the addition of linezolid for the treatment of TB meningitis.


Assuntos
Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Coelhos , Animais , Camundongos , Rifampina/uso terapêutico , Rifampina/farmacocinética , Linezolida/uso terapêutico , Tuberculose Meníngea/tratamento farmacológico , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Estudos Retrospectivos , Modelos Animais , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Mamíferos
2.
Int J Infect Dis ; 139: 34-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013152

RESUMO

OBJECTIVES: We tested the hypothesis that adjunctive rosiglitazone treatment would reduce levels of circulating angiopoietin-2 (Angpt-2) and improve outcomes of Mozambican children with severe malaria. METHODS: A randomized, double-blind, placebo-controlled trial of rosiglitazone vs placebo as adjunctive treatment to artesunate in children with severe malaria was conducted. A 0.045 mg/kg/dose of rosiglitazone or matching placebo were administered, in addition to standard of malaria care, twice a day for 4 days. The primary endpoint was the rate of decline of Angpt-2 over 96 hours. Secondary outcomes included the longitudinal dynamics of angiopoietin-1 (Angpt-1) and the Angpt-2/Angpt-1 ratio over 96 hours, parasite clearance kinetics, clinical outcomes, and safety metrics. RESULTS: Overall, 180 children were enrolled; 91 were assigned to rosiglitazone and 89 to placebo. Children who received rosiglitazone had a steeper rate of decline of Angpt-2 over the first 96 hours of hospitalization compared to children who received placebo; however, the trend was not significant (P = 0.28). A similar non-significant trend was observed for Angpt-1 (P = 0.65) and the Angpt-2/Angpt-1 ratio (P = 0.34). All other secondary and safety outcomes were similar between groups (P >0.05). CONCLUSION: Adjunctive rosiglitazone at this dosage was safe and well tolerated but did not significantly affect the longitudinal kinetics of circulating Angpt-2.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Rosiglitazona/uso terapêutico , Moçambique , Malária/tratamento farmacológico , Artesunato/uso terapêutico , Método Duplo-Cego , Malária Falciparum/tratamento farmacológico , Antimaláricos/efeitos adversos
3.
PLOS Glob Public Health ; 3(2): e0001553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36963048

RESUMO

Pneumonia is a leading cause of child mortality. However, currently we lack simple, objective, and accurate risk-stratification tools for pediatric pneumonia. Here we test the hypothesis that measuring biomarkers of immune and endothelial activation in children with pneumonia may facilitate the identification of those at risk of death. We recruited children <10 years old fulfilling WHO criteria for pneumonia and admitted to the Manhiça District Hospital (Mozambique) from 2010 to 2014. We measured plasma levels of IL-6, IL-8, Angpt-2, sTREM-1, sFlt-1, sTNFR1, PCT, and CRP at admission, and assessed their prognostic accuracy for in-hospital, 28-day, and 90-day mortality. Healthy community controls, within same age strata and location, were also assessed. All biomarkers were significantly elevated in 472 pneumonia cases versus 80 controls (p<0.001). IL-8, sFlt-1, and sTREM-1 were associated with in-hospital mortality (p<0.001) and showed the best discrimination with AUROCs of 0.877 (95% CI: 0.782 to 0.972), 0.832 (95% CI: 0.729 to 0.935) and 0.822 (95% CI: 0.735 to 0.908), respectively. Their performance was superior to CRP, PCT, oxygen saturation, and clinical severity scores. IL-8, sFlt-1, and sTREM-1 remained good predictors of 28-day and 90-day mortality. These findings suggest that measuring IL-8, sFlt-1, or sTREM-1 at hospital presentation can guide risk-stratification of children with pneumonia, which could enable prioritized care to improve survival and resource allocation.

4.
Nat Commun ; 13(1): 7974, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581633

RESUMO

Pretomanid is a nitroimidazole antimicrobial active against drug-resistant Mycobacterium tuberculosis and approved in combination with bedaquiline and linezolid (BPaL) to treat multidrug-resistant (MDR) pulmonary tuberculosis (TB). However, the penetration of these antibiotics into the central nervous system (CNS), and the efficacy of the BPaL regimen for TB meningitis, are not well established. Importantly, there is a lack of efficacious treatments for TB meningitis due to MDR strains, resulting in high mortality. We have developed new methods to synthesize 18F-pretomanid (chemically identical to the antibiotic) and performed cross-species positron emission tomography (PET) imaging to noninvasively measure pretomanid concentration-time profiles. Dynamic PET in mouse and rabbit models of TB meningitis demonstrates excellent CNS penetration of pretomanid but cerebrospinal fluid (CSF) levels does not correlate with those in the brain parenchyma. The bactericidal activity of the BPaL regimen in the mouse model of TB meningitis is substantially inferior to the standard TB regimen, likely due to restricted penetration of bedaquiline and linezolid into the brain parenchyma. Finally, first-in-human dynamic 18F-pretomanid PET in six healthy volunteers demonstrates excellent CNS penetration of pretomanid, with significantly higher levels in the brain parenchyma than in CSF. These data have important implications for developing new antibiotic treatments for TB meningitis.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Animais , Camundongos , Coelhos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Linezolida , Diarilquinolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Modelos Animais de Doenças
5.
J Infect Dis ; 226(11): 2010-2020, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35942812

RESUMO

BACKGROUND: Severe malaria is associated with multiple organ dysfunction syndrome (MODS), which may involve the gastrointestinal tract. METHODS: In a prospective cohort study in Uganda, we measured markers of intestinal injury (intestinal fatty-acid binding protein [I-FABP] and zonula occludens-1 [ZO-1]) and microbial translocation (lipopolysaccharide binding protein [LBP] and soluble complement of differentiation 14 [sCD14]) among children admitted with malaria. We examined their association with biomarkers of inflammation, endothelial activation, clinical signs of hypoperfusion, organ injury, and mortality. RESULTS: We enrolled 523 children (median age 1.5 years, 46% female, 7.5% mortality). Intestinal FABP was above the normal range (≥400 pg/mL) in 415 of 523 patients (79%). Intestinal FABP correlated with ZO-1 (ρ = 0.11, P = .014), sCD14 (ρ = 0.12, P = .0046) as well as markers of inflammation and endothelial activation. Higher I-FABP levels were associated with lower systolic blood pressure (ρ = -0.14, P = .0015), delayed capillary refill time (ρ = 0.17, P = .00011), higher lactate level (ρ = 0.40, P < .0001), increasing stage of acute kidney injury (ρ = 0.20, P = .0034), and coma (P < .0001). Admission I-FABP levels ≥5.6 ng/mL were associated with a 7.4-fold higher relative risk of in-hospital death (95% confidence interval, 1.4-11, P = .0016). CONCLUSIONS: Intestinal injury occurs commonly in children hospitalized with malaria and is associated with microbial translocation, systemic inflammation, tissue hypoperfusion, MODS, and fatal outcome.


Assuntos
Enteropatias , Malária , Criança , Humanos , Feminino , Lactente , Masculino , Insuficiência de Múltiplos Órgãos , Uganda/epidemiologia , Estudos Prospectivos , Receptores de Lipopolissacarídeos , Mortalidade Hospitalar , Proteínas de Ligação a Ácido Graxo , Biomarcadores , Malária/complicações , Inflamação
6.
PLoS Med ; 19(7): e1004057, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35830474

RESUMO

BACKGROUND: Despite the global burden of pneumonia, reliable triage tools to identify children in low-resource settings at risk of severe and fatal respiratory tract infection are lacking. This study assessed the ability of circulating host markers of immune and endothelial activation quantified at presentation, relative to currently used clinical measures of disease severity, to identify children with pneumonia who are at risk of death. METHODS AND FINDINGS: We conducted a secondary analysis of a prospective cohort study of children aged 2 to 59 months presenting to the Jinja Regional Hospital in Jinja, Uganda between February 2012 and August 2013, who met the Integrated Management of Childhood Illness (IMCI) diagnostic criteria for pneumonia. Circulating plasma markers of immune (IL-6, IL-8, CXCL-10/IP-10, CHI3L1, sTNFR1, and sTREM-1) and endothelial (sVCAM-1, sICAM-1, Angpt-1, Angpt-2, and sFlt-1) activation measured at hospital presentation were compared to lactate, respiratory rate, oxygen saturation, procalcitonin (PCT), and C-reactive protein (CRP) with a primary outcome of predicting 48-hour mortality. Of 805 children with IMCI pneumonia, 616 had severe pneumonia. Compared to 10 other immune and endothelial activation markers, sTREM-1 levels at presentation had the best predictive accuracy in identifying 48-hour mortality for children with pneumonia (AUROC 0.885, 95% CI 0.841 to 0.928; p = 0.03 to p < 0.001) and severe pneumonia (AUROC 0.870, 95% CI 0.824 to 0.916; p = 0.04 to p < 0.001). sTREM-1 was more strongly associated with 48-hour mortality than lactate (AUROC 0.745, 95% CI 0.664 to 0.826; p < 0.001), respiratory rate (AUROC 0.615, 95% CI 0.528 to 0.702; p < 0.001), oxygen saturation (AUROC 0.685, 95% CI 0.594 to 0.776; p = 0.002), PCT (AUROC 0.650, 95% CI 0.566 to 0.734; p < 0.001), and CRP (AUROC 0.562, 95% CI 0.472 to 0.653; p < 0.001) in cases of pneumonia and severe pneumonia. The main limitation of this study was the unavailability of radiographic imaging. CONCLUSIONS: In this cohort of Ugandan children, sTREM-1 measured at hospital presentation was a significantly better indicator of 48-hour mortality risk than other common approaches to risk stratify children with pneumonia. Measuring sTREM-1 at clinical presentation may improve the early triage, management, and outcome of children with pneumonia at risk of death. TRIAL REGISTRATION: The trial was registered at clinicaltrial.gov (NCT04726826).


Assuntos
Proteína C-Reativa , Pneumonia , Biomarcadores , Proteína C-Reativa/metabolismo , Criança , Estudos de Coortes , Humanos , Lactatos , Pneumonia/diagnóstico , Estudos Prospectivos , Medição de Risco , Uganda/epidemiologia
7.
EBioMedicine ; 78: 103982, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35405523

RESUMO

BACKGROUND: Endothelial cell (EC) activation, endotheliitis, vascular permeability, and thrombosis have been observed in patients with severe coronavirus disease 2019 (COVID-19), indicating that the vasculature is affected during the acute stages of SARS-CoV-2 infection. It remains unknown whether circulating vascular markers are sufficient to predict clinical outcomes, are unique to COVID-19, and if vascular permeability can be therapeutically targeted. METHODS: Prospectively evaluating the prevalence of circulating inflammatory, cardiac, and EC activation markers as well as developing a microRNA atlas in 241 unvaccinated patients with suspected SARS-CoV-2 infection allowed for prognostic value assessment using a Random Forest model machine learning approach. Subsequent ex vivo experiments assessed EC permeability responses to patient plasma and were used to uncover modulated gene regulatory networks from which rational therapeutic design was inferred. FINDINGS: Multiple inflammatory and EC activation biomarkers were associated with mortality in COVID-19 patients and in severity-matched SARS-CoV-2-negative patients, while dysregulation of specific microRNAs at presentation was specific for poor COVID-19-related outcomes and revealed disease-relevant pathways. Integrating the datasets using a machine learning approach further enhanced clinical risk prediction for in-hospital mortality. Exposure of ECs to COVID-19 patient plasma resulted in severity-specific gene expression responses and EC barrier dysfunction, which was ameliorated using angiopoietin-1 mimetic or recombinant Slit2-N. INTERPRETATION: Integration of multi-omics data identified microRNA and vascular biomarkers prognostic of in-hospital mortality in COVID-19 patients and revealed that vascular stabilizing therapies should be explored as a treatment for endothelial dysfunction in COVID-19, and other severe diseases where endothelial dysfunction has a central role in pathogenesis. FUNDING: This work was directly supported by grant funding from the Ted Rogers Center for Heart Research, Toronto, Ontario, Canada and the Peter Munk Cardiac Center, Toronto, Ontario, Canada.


Assuntos
COVID-19 , MicroRNAs , Doenças Vasculares , COVID-19/diagnóstico , COVID-19/mortalidade , Permeabilidade Capilar , Humanos , MicroRNAs/metabolismo , SARS-CoV-2 , Doenças Vasculares/virologia
8.
Front Neurol ; 13: 805786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250814

RESUMO

Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade. This immune response is initiated by the resident brain cells, microglia and astrocytes, which are not only integral to fighting the infection but also have important roles during normal brain development. Additionally, cytokines and other immune mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells not only play a role in BBB permeability and peripheral cell recruitment, but also in brain maturation. Consequently, these immune modulators and the activation of microglia and astrocytes during infection adversely impact normal neurodevelopment. Perturbations to normal brain development manifest as neurodevelopmental and neurocognitive impairments common among children who survive CNS infections and are often permanent. In part 2 of the review series, we broadly summarize the unique challenges CNS infections create in a developing brain and explore the interaction of regulators of neurodevelopment and CNS immune response as part of the neuro-immune axis.

9.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085105

RESUMO

Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.


Assuntos
Rifampina , Tuberculose Meníngea , Animais , Antituberculosos , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Modelos Animais , Coelhos , Rifampina/uso terapêutico , Tuberculose Meníngea/complicações , Tuberculose Meníngea/tratamento farmacológico
10.
J Allergy Clin Immunol ; 147(1): 99-106.e4, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045281

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has led to surges of patients presenting to emergency departments (EDs) and potentially overwhelming health systems. OBJECTIVE: We sought to assess the predictive accuracy of host biomarkers at clinical presentation to the ED for adverse outcome. METHODS: Prospective observational study of PCR-confirmed COVID-19 patients in the ED of a Swiss hospital. Concentrations of inflammatory and endothelial dysfunction biomarkers were determined at clinical presentation. We evaluated the accuracy of clinical signs and these biomarkers in predicting 30-day intubation/mortality, and oxygen requirement by calculating the area under the receiver-operating characteristic curve and by classification and regression tree analysis. RESULTS: Of 76 included patients with COVID-19, 24 were outpatients or hospitalized without oxygen requirement, 35 hospitalized with oxygen requirement, and 17 intubated/died. We found that soluble triggering receptor expressed on myeloid cells had the best prognostic accuracy for 30-day intubation/mortality (area under the receiver-operating characteristic curve, 0.86; 95% CI, 0.77-0.95) and IL-6 measured at presentation to the ED had the best accuracy for 30-day oxygen requirement (area under the receiver-operating characteristic curve, 0.84; 95% CI, 0.74-0.94). An algorithm based on respiratory rate and sTREM-1 predicted 30-day intubation/mortality with 94% sensitivity and 0.1 negative likelihood ratio. An IL-6-based algorithm had 98% sensitivity and 0.04 negative likelihood ratio for 30-day oxygen requirement. CONCLUSIONS: sTREM-1 and IL-6 concentrations in COVID-19 in the ED have good predictive accuracy for intubation/mortality and oxygen requirement. sTREM-1- and IL-6-based algorithms are highly sensitive to identify patients with adverse outcome and could serve as early triage tools.


Assuntos
Algoritmos , COVID-19/sangue , Serviço Hospitalar de Emergência , Interleucina-6/sangue , SARS-CoV-2/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Triagem
11.
Front Pediatr ; 8: 552083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072673

RESUMO

Fever is one of the leading causes for pediatric medical consultation and the most common symptom at clinical presentation in low- and middle-income countries (LMICs). Most febrile episodes are due to self-limited infections, but a small proportion of children will develop life-threatening infections. The early recognition of children who have or are progressing to a critical illness among all febrile cases is challenging, and there are currently no objective and quantitative tools to do so. This results in increased morbidity and mortality among children with impending life-threatening infections, whilst contributing to the unnecessary prescription of antibiotics, overwhelming health care facilities, and harm to patients receiving avoidable antimicrobial treatment. Specific fever origin is difficult to ascertain and co-infections in LMICs are common. However, many severe infections share common pathways of host injury irrespective of etiology, including immune and endothelial activation that contribute to the pathobiology of sepsis (i.e., pathogen "agnostic" mechanisms of disease). Importantly, mediators of these pathways are independent markers of disease severity and outcome. We propose that measuring circulating levels of these factors can provide quantitative and objective evidence to: enable early recognition of severe infection; guide patient triage and management; enhance post-discharge risk stratification and follow up; and mitigate potential gender bias in clinical decisions. Here, we review the clinical and biological evidence supporting the clinical utility of host immune and endothelial activation biomarkers as components of novel rapid triage tests, and discuss the challenges and needs for developing and implementing such tools.

12.
Malar J ; 19(1): 268, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709257

RESUMO

Despite potent anti-malarial treatment, mortality rates associated with severe falciparum malaria remain high. To attempt to improve outcome, several trials have assessed a variety of potential adjunctive therapeutics, however none to date has been shown to be beneficial. This may be due, at least partly, to the therapeutics chosen and clinical trial design used. Here, we highlight three themes that could facilitate the choice and evaluation of putative adjuvant interventions for severe malaria, paving the way for their assessment in randomized controlled trials. Most clinical trials of adjunctive therapeutics to date have been underpowered due to the large number of participants required to reach mortality endpoints, rendering these study designs challenging and expensive to conduct. These limitations may be mitigated by the use of risk-stratification of participants and application of surrogate endpoints. Appropriate surrogate endpoints include direct measures of pathways causally involved in the pathobiology of severe and fatal malaria, including markers of host immune and endothelial activation and microcirculatory dysfunction. We propose using circulating markers of these pathways to identify high-risk participants that would be most likely to benefit from adjunctive therapy, and further by adopting these biomarkers as surrogate endpoints; moreover, choosing interventions that target deleterious host immune responses that directly contribute to microcirculatory dysfunction, multi-organ dysfunction and death; and, finally, prioritizing where possible, drugs that act on these pathways that are already approved by the FDA, or other regulators, for other indications, and are known to be safe in target populations, including children. An emerging understanding of the critical role of the host response in severe malaria pathogenesis may facilitate both clinical trial design and the search of effective adjunctive therapeutics.


Assuntos
Adjuvantes Farmacêuticos/uso terapêutico , Antimaláricos/uso terapêutico , Ensaios Clínicos como Assunto , Malária Falciparum/prevenção & controle , Biomarcadores/análise , Humanos , Malária Falciparum/fisiopatologia
13.
Trends Parasitol ; 36(2): 127-137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31864896

RESUMO

Malaria infection during pregnancy is associated with adverse birth outcomes but underlying mechanisms are poorly understood. Here, we discuss the impact of malaria in pregnancy on three pathways that are important regulators of healthy pregnancy outcomes: L-arginine-nitric oxide biogenesis, complement activation, and the heme axis. These pathways are not mutually exclusive, and they collectively create a proinflammatory, antiangiogenic milieu at the maternal-fetal interface that interferes with placental function and development. We hypothesize that targeting these host-response pathways would mitigate the burden of adverse birth outcomes attributable to malaria in pregnancy.


Assuntos
Malária/complicações , Malária/terapia , Complicações Parasitárias na Gravidez/terapia , Feminino , Humanos , Gravidez , Resultado da Gravidez
14.
Virulence ; 10(1): 1034-1046, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31775570

RESUMO

Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.


Assuntos
Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Malária/diagnóstico , Malária/tratamento farmacológico , Microvasos/patologia , Animais , Ensaios Clínicos como Assunto , Endotélio/metabolismo , Endotélio/parasitologia , Eritrócitos/metabolismo , Humanos , Imunidade Inata , Malária/imunologia , Camundongos
15.
Front Cell Neurosci ; 13: 405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616251

RESUMO

The blood-brain barrier (BBB) helps maintain a tightly regulated microenvironment for optimal central nervous system (CNS) homeostasis and facilitates communications with the peripheral circulation. The brain endothelial cells, lining the brain's vasculature, maintain close interactions with surrounding brain cells, e.g., astrocytes, pericytes and perivascular macrophages. This function facilitates critical intercellular crosstalk, giving rise to the concept of the neurovascular unit (NVU). The steady and appropriate communication between all components of the NVU is essential for normal CNS homeostasis and function, and dysregulation of one of its constituents can result in disease. Among the different brain regions, and along the vascular tree, the cellular composition of the NVU varies. Therefore, differential cues from the immediate vascular environment can affect BBB phenotype. To support the fluctuating metabolic and functional needs of the underlying neuropil, a specialized vascular heterogeneity is required. This is achieved by variances in barrier function, expression of transporters, receptors, and adhesion molecules. This mini-review will take you on a journey through evolving concepts surrounding the BBB, the NVU and beyond. Exploring classical experiments leading to new approaches will allow us to understand that the BBB is not merely a static separation between the brain and periphery but a closely regulated and interactive entity. We will discuss shifting paradigms, and ultimately aim to address the importance of BBB endothelial heterogeneity with regard to the function of the BBB within the NVU, and touch on its implications for different neuropathologies.

16.
Dev Neurobiol ; 79(4): 317-334, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31004466

RESUMO

Members of the TNF and TNF receptor superfamilies acting by both forward and reverse signaling are increasingly recognized as major physiological regulators of axon growth and tissue innervation in development. Studies of the experimentally tractable superior cervical ganglion (SCG) neurons and their targets have shown that only TNF reverse signaling, not forward signaling, is a physiological regulator of sympathetic innervation. Here, we compared SCG neurons and their targets with prevertebral ganglion (PVG) neurons and their targets. Whereas all SCG targets were markedly hypoinnervated in both TNF-deficient and TNFR1-deficient mice, PVG targets were not hypoinnervated in these mice and one PVG target, the spleen, was significantly hyperinnervated. These in vivo regional differences in innervation density were related to in vitro differences in the responses of SCG and PVG neurons to TNF reverse and forward signaling. Though TNF reverse signaling enhanced SCG axon growth, it did not affect PVG axon growth. Whereas activation of TNF forward signaling in PVG axons inhibited growth, TNF forward signaling could not be activated in SCG axons. These latter differences in the response of SCG and PVG axons to TNF forward signaling were related to TNFR1 expression, whereas PVG axons expressed TNFR1, SCG axons did not. These results show that both TNF reverse and forward signaling are physiological regulators of sympathetic innervation in different tissues.


Assuntos
Axônios/metabolismo , Gânglios Simpáticos/crescimento & desenvolvimento , Gânglios Simpáticos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Camundongos Knockout , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
17.
Open Biol ; 7(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100666

RESUMO

Tumour necrosis factor receptor 1 (TNFR1)-activated TNFα reverse signalling, in which membrane-integrated TNFα functions as a receptor for TNFR1, enhances axon growth from developing sympathetic neurons and plays a crucial role in establishing sympathetic innervation. Here, we have investigated the link between TNFα reverse signalling and axon growth in cultured sympathetic neurons. TNFR1-activated TNFα reverse signalling promotes Ca2+ influx, and highly selective T-type Ca2+ channel inhibitors, but not pharmacological inhibitors of L-type, N-type and P/Q-type Ca2+ channels, prevented enhanced axon growth. T-type Ca2+ channel-specific inhibitors eliminated Ca2+ spikes promoted by TNFα reverse signalling in axons and prevented enhanced axon growth when applied locally to axons, but not when applied to cell somata. Blocking action potential generation did not affect the effect of TNFα reverse signalling on axon growth, suggesting that propagated action potentials are not required for enhanced axon growth. TNFα reverse signalling enhanced protein kinase C (PKC) activation, and pharmacological inhibition of PKC prevented the axon growth response. These results suggest that TNFα reverse signalling promotes opening of T-type Ca2+ channels along sympathetic axons, which is required for enhanced axon growth.


Assuntos
Axônios/metabolismo , Canais de Cálcio Tipo T/metabolismo , Neurônios/citologia , Fator de Necrose Tumoral alfa/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Camundongos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
18.
Genes Dev ; 27(21): 2305-19, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186977

RESUMO

Norrin is a cysteine-rich growth factor that is required for angiogenesis in the eye, ear, brain, and female reproductive organs. It functions as an atypical Wnt ligand by specifically binding to the Frizzled 4 (Fz4) receptor. Here we report the crystal structure of Norrin, which reveals a unique dimeric structure with each monomer adopting a conserved cystine knot fold. Functional studies demonstrate that the novel Norrin dimer interface is required for Fz4 activation. Furthermore, we demonstrate that Norrin contains separate binding sites for Fz4 and for the Wnt ligand coreceptor Lrp5 (low-density lipoprotein-related protein 5) or Lrp6. Instead of inducing Fz4 dimerization, Norrin induces the formation of a ternary complex with Fz4 and Lrp5/6 by binding to their respective extracellular domains. These results provide crucial insights into the assembly and activation of the Norrin-Fz4-Lrp5/6 signaling complex.


Assuntos
Proteínas do Olho/química , Proteínas do Olho/metabolismo , Receptores Frizzled/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Animais , Sítios de Ligação , Células COS , Cristalografia por Raios X , Dimerização , Proteínas do Olho/genética , Receptores Frizzled/química , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Tetraspaninas/metabolismo , Fator de Crescimento Transformador beta/química , beta Catenina/metabolismo
19.
Nat Neurosci ; 16(7): 865-73, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23749144

RESUMO

Reverse signaling via members of the tumor necrosis factor (TNF) superfamily controls multiple aspects of immune function. Here we document TNFα reverse signaling in the nervous system to our knowledge for the first time and show that it has a crucial role in establishing sympathetic innervation. During postnatal development, sympathetic axons express TNFα as they grow and branch in their target tissues, which in turn express TNF receptor 1 (TNFR1). In culture, soluble forms of TNFR1 act directly on postnatal sympathetic axons to promote growth and branching by a mechanism that depends on membrane-integrated TNFα and on downstream activation of ERK. Sympathetic innervation density is substantially lower in several tissues in postnatal and adult mice lacking either TNFα or TNFR1. These findings reveal that target-derived TNFR1 acts as a reverse-signaling ligand for membrane-integrated TNFα to promote growth and branching of sympathetic axons.


Assuntos
Axônios/fisiologia , Fibras Nervosas/fisiologia , Neurônios/citologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas ADAM/farmacologia , Proteína ADAM17 , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/farmacologia , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Gânglio Cervical Superior/citologia , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/genética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...