Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Colloid Interface Sci ; 522: 126-135, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29587194

RESUMO

Liquid crystalline nanoparticles (LCNPs), e.g. cubosomes and hexosomes, are receiving more and more attraction as drug delivery vehicles. Dry powder formulation that forms LCNPs upon hydration can be advantageous to make new routes of administration accessible. In this work, we investigate use of three disaccharides (lactose, trehalose and sucrose) as protective matrices for glycerol monooleate based LCNP forming powders produced by freeze-drying. Phase behavior, particle size and size distributions at the different preparation steps were monitored by small angle x-ray scattering (SAXS) and dynamic light scattering (DLS). Particle appearance was imaged by cryogenic transmission electron microscopy (cryo-TEM). Moreover, the therapeutic relevant antimicrobial peptide AP114 (plectasin derivative) was incorporated in the formulations. Peptide encapsulation and release as well as in vitro antibacterial effect were investigated. Results showed that all freeze-dried powders did form particles with liquid crystalline structure upon hydration. However, a phase transition from the bicontinuous cubic Pn3m to the reversed hexagonal was observed, as a consequence of sugar addition and the freeze-drying procedure. Data indicates that trehalose is the preferred choice of lyo-protectant in order to maintain a mono-modal particle size distribution. In addition, antimicrobial activity of AP114-containing formulations was found to be highest for the formulation containing trehalose. The release kinetics of AP114 from the nanoparticles was strongly affected by the dimensions of the hexagonal phase. Larger dimension of the hexagonal phase, significantly improved the release of AP114 and antimicrobial activity of the formulation.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Dissacarídeos/química , Cristais Líquidos/química , Nanopartículas/química , Peptídeos/química , Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Portadores de Fármacos , Composição de Medicamentos/métodos , Liofilização/métodos , Glicerídeos/química , Humanos , Cinética , Resistência a Meticilina , Tamanho da Partícula , Peptídeos/uso terapêutico , Transição de Fase , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Temperatura
3.
Nanomedicine ; 13(8): 2517-2521, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28647590

RESUMO

Most inhaled nanomedicines in development are for the treatment of lung disease, yet little is known about their interaction with the respiratory tract lining fluids (RTLFs). Here we combined the use of nano-silica, as a protein concentrator, with label-free snapshot proteomics (LC-MS/MS; key findings confirmed by ELISA) to generate a quantitative profile of the RTLF proteome and provided insight into the evolved corona; information that may be used in future to improve drug targeting to the lungs by inhaled medicines. The asthmatic coronal proteome displayed a reduced contribution of surfactant proteins (SP-A and B) and a higher contribution of α1-antitrypsin. Pathway analysis suggested that asthmatic RTLFs may also be deficient in proteins related to metal handling (e.g. lactoferrin). This study demonstrates how the composition of the corona acquired by inhaled nanoparticles is modified in asthma and suggests depressed mucosal immunity even in mild airway disease.


Assuntos
Asma/metabolismo , Pulmão/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Dióxido de Silício/metabolismo , Administração por Inalação , Humanos , Coroa de Proteína/análise , Proteoma/análise , Proteoma/metabolismo , Proteômica
4.
Pharm Res ; 34(12): 2454-2465, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28560698

RESUMO

PURPOSE: To characterise a biorelevant simulated lung fluid (SLF) based on the composition of human respiratory tract lining fluid. SLF was compared to other media which have been utilized as lung fluid simulants in terms of fluid structure, biocompatibility and performance in inhalation biopharmaceutical assays. METHODS: The structure of SLF was investigated using cryo-transmission electron microscopy, photon correlation spectroscopy and Langmuir isotherms. Biocompatibility with A549 alveolar epithelial cells was determined by MTT assay, morphometric observations and transcriptomic analysis. Biopharmaceutical applicability was evaluated by measuring the solubility and dissolution of beclomethasone dipropionate (BDP) and fluticasone propionate (FP), in SLF. RESULTS: SLF exhibited a colloidal structure, possessing vesicles similar in nature to those found in lung fluid extracts. No adverse effect on A549 cells was apparent after exposure to the SLF for 24 h, although some metabolic changes were identified consistent with the change of culture medium to a more lung-like composition. The solubility and dissolution of BDP and FP in SLF were enhanced compared to Gamble's solution. CONCLUSION: The SLF reported herein constitutes a biorelevant synthetic simulant which is suitable to study biopharmaceutical properties of inhalation medicines such as those being proposed for an inhaled biopharmaceutics classification system.


Assuntos
Antiasmáticos/farmacocinética , Beclometasona/farmacocinética , Fluticasona/farmacocinética , Pulmão/metabolismo , Células A549 , Administração por Inalação , Antiasmáticos/administração & dosagem , Antiasmáticos/química , Asma/tratamento farmacológico , Beclometasona/administração & dosagem , Beclometasona/química , Líquidos Corporais/metabolismo , Fluticasona/administração & dosagem , Fluticasona/química , Humanos , Solubilidade
5.
Int J Pharm ; 526(1-2): 400-412, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28476579

RESUMO

Novel antibiotics, such as antimicrobial peptides (AMPs), have recently attended more and more attraction. In this work, dispersed cubic liquid crystalline gel (cubosomes) was used as drug delivery vehicles for three AMPs (AP114, DPK-060 and LL-37). Association of peptides onto cubosomes was studied at two cubosome/peptide ratios using high performance liquid chromatography, ζ-potential and circular dichroism measurements. AMPs impact on the cubosome structure was investigated using small angle x-ray scattering and cryogenic transmission electron microscopy. The antimicrobial effect of the AMP loaded cubosomes was studied in vitro by minimum inhibitory concentration and time-kill assays. Proteolytic protection was investigated by incubating the formulations with two elastases and the antimicrobial effect after proteolysis was studied using radial diffusion assay. Different association efficacy onto the cubosomes was observed among the AMPs, with LL-37 showing greatest association (>60%). AP114 loaded cubosomes displayed a preserved antimicrobial effect, whereas for LL-37 the broad spectrum bacterial killing was reduced to only comprise Gram-negative bacteria. Interestingly, DPK-060 loaded cubosomes showed a slight enhanced effect against S. aureus and E. coli strains. Moreover, the cubosomes were found to protect LL-37 from proteolytic degradation, resulting in a significantly better bactericidal effect after being subjected to elastase, compared to unformulated peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Escherichia coli , Géis , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Staphylococcus aureus
6.
J Biol Chem ; 292(22): 9345-9357, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420731

RESUMO

Inactivation of the tumor suppressor protein p53 by mutagenesis, chemical modification, protein-protein interaction, or aggregation has been associated with different human cancers. Although DNA is the typical substrate of p53, numerous studies have reported p53 interactions with RNA. Here, we have examined the effects of RNA of varied sequence, length, and origin on the mechanism of aggregation of the core domain of p53 (p53C) using light scattering, intrinsic fluorescence, transmission electron microscopy, thioflavin-T binding, seeding, and immunoblot assays. Our results are the first to demonstrate that RNA can modulate the aggregation of p53C and full-length p53. We found bimodal behavior of RNA in p53C aggregation. A low RNA:protein ratio (∼1:50) facilitates the accumulation of large amorphous aggregates of p53C. By contrast, at a high RNA:protein ratio (≥1:8), the amorphous aggregation of p53C is clearly suppressed. Instead, amyloid p53C oligomers are formed that can act as seeds nucleating de novo aggregation of p53C. We propose that structured RNAs prevent p53C aggregation through surface interaction and play a significant role in the regulation of the tumor suppressor protein.


Assuntos
Agregados Proteicos , RNA/química , Proteína Supressora de Tumor p53/química , Humanos , Domínios Proteicos , RNA/genética , RNA/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Langmuir ; 32(17): 4217-28, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27033359

RESUMO

The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded with peptide LL-37 displayed a loss in its broad-spectrum bactericidal properties. AMP-loaded hexosomes showed a reduction in antimicrobial activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Portadores de Fármacos/química , Lipídeos/química , Cristais Líquidos/química , Testes de Sensibilidade Microbiana
8.
Nanomedicine ; 12(4): 1033-1043, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26767511

RESUMO

When inhaled nanoparticles deposit in the lungs, they transit through respiratory tract lining fluid (RTLF) acquiring a biomolecular corona reflecting the interaction of the RTLF with the nanomaterial surface. Label-free snapshot proteomics was used to generate semi-quantitative profiles of corona proteins formed around silica (SiO2) and poly(vinyl) acetate (PVAc) nanoparticles in RTLF, the latter employed as an archetype drug delivery vehicle. The evolved PVAc corona was significantly enriched compared to that observed on SiO2 nanoparticles (698 vs. 429 proteins identified); however both coronas contained a substantial contribution from innate immunity proteins, including surfactant protein A, napsin A and complement (C1q and C3) proteins. Functional protein classification supports the hypothesis that corona formation in RTLF constitutes opsonisation, preparing particles for phagocytosis and clearance from the lungs. These data highlight how an understanding of the evolved corona is necessary for the design of inhaled nanomedicines with acceptable safety and tailored clearance profiles. FROM THE CLINICAL EDITOR: Inhaled nanoparticles often acquire a layer of protein corona while they go through the respiratory tract. Here, the authors investigated the identity of these proteins. The proper identification would improve the understanding of the use of inhaled nanoparticles in future therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Coroa de Proteína , Sistema Respiratório/metabolismo , Adulto , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/isolamento & purificação , Líquidos Corporais/metabolismo , Complemento C1q/biossíntese , Complemento C1q/isolamento & purificação , Complemento C3/biossíntese , Complemento C3/isolamento & purificação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Nanopartículas/efeitos adversos , Proteômica , Proteína A Associada a Surfactante Pulmonar/biossíntese , Proteína A Associada a Surfactante Pulmonar/isolamento & purificação , Sistema Respiratório/efeitos dos fármacos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química
9.
Analyst ; 141(3): 981-8, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26673836

RESUMO

Membrane proteins constitute the largest class of drug targets but they present many challenges in drug discovery. Importantly, the discovery of potential drug candidates is hampered by the limited availability of efficient methods for screening drug-protein interactions. In this work we present a novel strategy for rapid identification of molecules capable of binding to a selected membrane protein. An integral membrane protein (human aquaporin-1) was incorporated into planar lipid bilayer disks (lipodisks), which were subsequently covalently coupled to porous derivatized silica and packed into HPLC columns. The obtained affinity columns were used in a typical protocol for fragment screening by weak affinity chromatography (WAC), in which one hit was identified out of a 200 compound collection. The lipodisk-based strategy, which ensures a stable and native-like lipid environment for the protein, is expected to work also with other membrane proteins and screening procedures.


Assuntos
Cromatografia de Afinidade/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Aquaporina 1/química , Aquaporina 1/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Porosidade , Dióxido de Silício/química
10.
Chempluschem ; 80(4): 656-664, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31973437

RESUMO

Halogenated dodecaborates, and especially dodecaiodododecaborate(2-), are found to trigger effectively the release of the contents of phospholipid liposomes, including liposomes containing distearoylphosphatidylcholine and cholesterol, which are used clinically in cancer therapy. The basis of the release is studied through differential scanning calorimetry, cryo-transmission electron microscopy, and atomic force microscopy. Upon administration at high concentrations, drastic morphological changes are induced by the dodecaborates. Their possible use in triggered release is suggested.

11.
Langmuir ; 31(2): 741-51, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25514503

RESUMO

The biophysical analysis of the aggregates formed by different chemotypes of bacterial lipopolysaccharides (LPS) before and after challenge by two different antiendotoxic antimicrobial peptides (LL37 and bovine lactoferricin) was performed in order to determine their effect on the morphology of LPS aggregates. Small-angle neutron scattering (SANS) and cryogenic transmission electron microscopy (cryoTEM) were used to examine the structures formed by both smooth and rough LPS chemotypes and the effect of the peptides, by visualization of the aggregates and analysis of the scattering data by means of both mathematical approximations and defined models. The data showed that the structure of LPS determines the morphology of the aggregates and influences the binding activity of both peptides. The morphologies of the worm-like micellar aggregates formed by the smooth LPS were relatively unaltered by the presence of the peptides due to their pre-existing high degree of positive curvature being little affected by their association with either peptide. On the other hand, the aggregates formed by the rough LPS chemotypes showed marked morphological changes from lamellar structures to ordered micellar networks, induced by the increase in positive curvature engendered upon association with the peptides. The combined use of cryoTEM and SANS proved to be a very useful tool for studying the aggregation properties of LPS in solution at biologically relevant concentrations.


Assuntos
Anti-Infecciosos/química , Lipopolissacarídeos/química , Peptídeos/química , Animais , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/química , Bovinos , Lactoferrina/química , Espalhamento a Baixo Ângulo , Soluções
12.
Langmuir ; 30(39): 11552-62, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25201697

RESUMO

We report the effect of native cyclodextrins (α, ß, and γ) and selected derivatives in modulating the self-assembly of the nonionic surfactant polyoxyethylene cholesteryl ether (ChEO10) and its mixtures with triethylene glycol monododecyl ether (C12EO3), which form wormlike micelles. Cyclodextrins (CDs) generally induce micellar breakup through a host-guest interaction with surfactants; instead, we show that a constructive effect, leading to gel formation, is obtained with specific CDs and that the widely invoked host-guest interaction may not be the only key to the association. When added to wormlike micelles of ChEO10 and C12EO3, native ß-CD, 2-hydroxyethyl-ß-CD (HEBCD), and a sulfated sodium salt of ß-CD (SULFBCD) induce a substantial increase of the viscoelasticity, while methylated CDs rupture the micelles, leading to a loss of the viscosity, and the other CDs studied (native α- and γ- and hydroxypropylated CDs) show a weak interaction. Most remarkably, the addition of HEBCD or SULFBCD to pure ChEO10 solutions (which are low-viscosity, Newtonian fluids of small, ellipsoidal micelles) induces the formation of transparent gels. The combination of small-angle neutron scattering, dynamic light scattering, and cryo-TEM reveals that both CDs drive the elongation of ChEO10 aggregates into an entangled network of wormlike micelles. (1)H NMR and fluorescence spectroscopy demonstrate the formation of inclusion complexes between ChEO10 and methylated CDs, consistent with the demicellization observed. Instead, HEBCD forms a weak complex with ChEO10, while no complex is detected with SULFBCD. This shows that inclusion complex formation is not the determinant event leading to micellar growth. HEBCD:ChEO10 complex, which coexists with the aggregated surfactant, could act as a cosurfactant with a different headgroup area. For SULFBCD, intermolecular interactions via the external surface of the CD may be more relevant.


Assuntos
Ciclodextrinas/química , Elasticidade , Tensoativos/química , Cloreto de Cálcio/química , Micelas , Cloreto de Potássio/química , Reologia , Temperatura , Viscosidade
13.
Langmuir ; 30(19): 5488-96, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24785902

RESUMO

Small, fast-tumbling bicelles are frequently used in solution NMR studies of protein-lipid interactions. For this purpose it is critical to have information about the organization of the lipids within the bicelle structure. We have studied the morphology of small, fast-tumbling bicelles containing DMPC and DHPC as a function of temperature, lipid concentration, and the relative ratio (q value) of lipid (DMPC) to detergent (DHPC) amounts. Dynamic light scattering and cryo-transmission electron microscopy techniques were used to measure the size of the bicelles and to monitor the shape and dispersity of the particles in the samples. The stability and size of DMPC-containing bicelle mixtures were found to be highly dependent on temperature and the total lipid concentration for mixtures with q = 1 and q = 1.5. Stable DMPC/DHPC bicelles are only formed at low q values (0.5). Bicelle mixtures with q > 0.5 appear to be multidisperse containing more than one component, one with r(H) around 2.5 nm and one with r(H) of 6-8 nm. This is interpreted as a coexistence of small (possibly mixed micelles) bicelles and much larger bicelles. Incubating the sample at 37 °C increases the phase separation. Moreover, low total amphiphile concentrations and low q values lead to the formation of a temperature-independent morphology, interpreted as the formation of small particles in which the DHPC and DMPC are more mixed. On the basis of these results, we propose the existence of a critical bicelle concentration, a parameter that determines the existence of bilayered bicelles, which varies with q value. This polymorphism was not observed at any concentrations for q = 0.5 bicelles, for which a small but detectable temperature dependence was observed at high concentrations. The results demonstrate that q = 0.5 mixtures predominantly form "classical" bicelles, but that caution is needed when using fast-tumbling mixtures with q values higher than 0.5.


Assuntos
Micelas , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância Magnética , Éteres Fosfolipídicos/química
14.
Biochim Biophys Acta ; 1838(7): 1862-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726609

RESUMO

The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellular membranes when overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE) was detected to be the most affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition.


Assuntos
Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Glucosiltransferases/metabolismo , Acholeplasma laidlawii/enzimologia , Acholeplasma laidlawii/genética , Acholeplasma laidlawii/metabolismo , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Estrutura Secundária de Proteína
15.
Langmuir ; 30(14): 3928-38, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24697326

RESUMO

The influence of adding salt on the self-assembly in sodium octyl sulfate (SOS)-rich mixtures of the anionic surfactant SOS and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) have been investigated with the two complementary techniques, small-angle neutron scattering (SANS) and cryo-transmission electron microscopy. We are able to conclude that addition of a substantial amount of inert salt, NaBr, mainly has three effects on the structural behaviors: (i) the micelles become much larger at the transition from micelles to bilayers, (ii) the fraction of bilayer disks increases at the expense of vesicles, and (iii) bilayer aggregates perforated with holes are formed in the most diluted samples. A novel form factor valid for perforated bilayer vesicles and disks is introduced for the first time and, as a result, we are able to directly observe the presence of perforated bilayers by means of fitting SANS data with an appropriate model. Moreover, we are able to conclude that the morphology of bilayer aggregates changes according to the following sequence of different bilayer topologies, vesicles → disks → perforated bilayers, as the electrolyte concentration is increased and surfactant mole fraction in the bilayer aggregates approaches equimolarity. We are able to rationalize this sequence of transitions as a result of a monotonous increase of the bilayer saddle-splay constant (k(c)(bi)) with decreasing influence from electrostatics, in agreement with theoretical predictions as deduced from the Poisson-Boltzmann theory.

16.
Langmuir ; 29(38): 11834-48, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23984704

RESUMO

The self-assembly in SOS-rich mixtures of the anionic surfactant sodium octyl sulfate (SOS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) has been investigated with the complementary techniques small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). Both techniques confirm the simultaneous presence of open and closed bilayer structures in highly diluted samples as well as the existence of small globular and large elongated micelles at higher concentrations. However, the two techniques sometimes differ with respect to which type of aggregates is present in a particular sample. In particular, globular or wormlike micelles are sometimes observed with cryo-TEM in the vicinity of the micelle-to-bilayer transition, although only bilayers are present according to SANS and the samples appear bluish to the eye. A similar discrepancy has previously been reported but could not be satisfactorily rationalized. On the basis of our comparison between in situ (SANS) and ex situ (cryo-TEM) experimental techniques, we suggest that this discrepancy appears mainly as a result of the non-negligible amount of surfactant adsorbed at interfaces of the thin sample film created during the cryo-TEM specimen preparation. Moreover, from our detailed SANS data analysis, we are able to observe the unusually high amount of free surfactant monomers present in SOS-rich mixtures of SOS and CTAB, and the experimental results give excellent agreement with model calculations based on the Poisson-Boltzmann mean field theory. Our careful comparison between model calculations and experiments has enabled us to rationalize the dramatic microstructural transformations frequently observed upon simply diluting mixtures of an anionic and a cationic surfactant.

17.
Langmuir ; 29(25): 7697-708, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23682968

RESUMO

We report the influence of five ß-cyclodextrin (ß-CD) derivatives, namely: randomly methylated ß-cyclodextrin (MBCD), heptakis (2,6-di-O-methyl)-ß-cyclodextrin (DIMEB), heptakis (2,3,6-tri-O-methyl)-ß-cyclodextrin (TRIMEB), 2-hydroxyethyl-ß-cyclodextrin (HEBCD) and 2-hydroxypropyl-ß-cyclodextrin (HPBCD), on the self-assembly of mixtures of nonionic surfactants: polyoxyethylene cholesteryl ether (ChEO10) and monocaprylin (MCL). Mixtures of ChEO10/MCL in water form highly viscoelastic wormlike micelle solutions (WLM) over a range of concentrations; herein, the composition was fixed at 10 wt % ChEO10/3 wt % MCL. The addition of methylated ß-CDs (MBCD, DIMEB, TRIMEB) induced a substantial disruption of the solid-like viscoelastic behavior, as shown from a loss of the Maxwell behavior, a large reduction in G' and G″ in oscillatory frequency-sweep measurements, and a drop of the viscosity. The disruption increased with the degree of substitution, following: MBCD < DIMEB < TRIMEB. Cryo-TEM images confirmed a loss of the WLM networks, revealing short rods and disc-like aggregates, which were corroborated by small-angle neutron scattering (SANS) measurements. Critical aggregation concentrations (CAC), measured by fluorescence spectroscopy, increased in the presence of DIMEB for both ChEO10 and MCL, suggesting the existence of interactions between methylated ß-CDs and both surfactants involved in WLM formation. Instead, hydroxyl-ß-CDs had a very different effect on the WLM. HPBCD only slightly reduced the solid-like behavior, without suppressing it. Quite remarkably, the addition of HEBCD reinforced the solid-like characteristics and increased the viscosity 10-fold. Cryo-TEM images confirmed the subsistence of WLM in ChEO10/MCL/HEBCD solutions, while SANS data revealed a slight elongation and thickening of the worms, and an increase of associated water molecules. CAC data showed that HPBCD had little effect on either surfactant, while HEBCD strongly affected the CAC of MCL and only slightly affected the ChEO10. For both DIMEB and HEBCD, time-resolved SANS measurements showed that morphology changes underlying these macroscopic changes occur in less than 100 ms.


Assuntos
Micelas , beta-Ciclodextrinas/química , Caprilatos/química , Microscopia Crioeletrônica , Glicerídeos/química , Microscopia Eletrônica de Transmissão , Viscosidade
18.
Langmuir ; 28(38): 13562-9, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22931403

RESUMO

Temperature effects on the viscosity and aggregation behavior of aqueous solutions of three different cellulose ethers--methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), and ethyl(hydroxyethyl)cellulose (EHEC)--were investigated using viscosity and dynamic light scattering measurements as well as cryo-TEM. In all cases, increasing temperature reduces the solvent quality of water, which induces aggregation. It was found that the aggregation rate followed the order EHEC > HPMC > MC, suggesting that cellulose ethers containing some bulky and partially hydrophilic substituents assemble into large aggregates more readly than methylcellulose. This finding is discussed in terms of the organization of the structures formed by the different cellulose ethers. The temperature-dependent association behavior of cellulose ethers was also investigated in a novel way by adding diethyleneglycolmonobutylether (BDG) to methylcellulose aqueous solutions. When the concentration of BDG was at and above 5 wt %, methylcellulose adopted HPMC-like solution behavior. In particular, a transition temperature where the viscosity was decreasing, prior to increasing at higher temperatures, appeared, and the aggregation rate increased. This observation is rationalized by the ability of amphiphilic BDG to accumulate at nonpolar interfaces and thus also to associate with hydrophobic regions of methylcellulose. In effect, BDG is suggested to act as a physisorbed hydrophilic and bulky substituent inducing constraints on aggregation similar to those of the chemically attached hydroxypropyl groups in HPMC and oligo(ethyleneoxide) chains in EHEC.


Assuntos
Óxido de Etileno/química , Metilcelulose/química , Configuração de Carboidratos , Éteres/química , Interações Hidrofóbicas e Hidrofílicas , Metilcelulose/análogos & derivados , Peso Molecular , Soluções , Temperatura , Viscosidade , Água/química
19.
Langmuir ; 28(32): 11755-66, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22831645

RESUMO

The present study was designed to evaluate the effect of the negatively charged food-grade emulsifier citrem on the internal nanostructures of oil-free and oil-loaded aqueous dispersions of phytantriol (PHYT) and glyceryl monooleate (GMO). To our knowledge, this is the first report in the literature on the utilization of this charged stabilizing agent in the formation of aqueous dispersions consisting of well-ordered interiors (either inverted-type hexagonal (H(2)) phases or inverted-type microemulsion systems). Synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to characterize the dispersed and the corresponding nondispersed phases of inverted-type nonlamellar liquid-crystalline phases and microemulsions. The results suggest a transition between different internal nanostructures of the aqueous dispersions after the addition of the stabilizer. In addition to the main function of citrem as a stabilizer that adheres to the surface of the dispersed particles, it has a significant impact on the internal nanostructures, which is governed by the following factors: (1) its penetration between the hydrophobic tails of the lipid molecules and (2) its degree of incorporation into the lipid-water interfacial area. In the presence of citrem, the formation of aqueous dispersions with functionalized hydrophilic domains by the enlargement of the hydrophilic nanochannels of the internal H(2) phase in hexosomes and the hydrophilic core of the L(2) phase in emulsified microemulsions (EMEs) could be particularly attractive for solubilizing and controlling the release of positively charged drugs.


Assuntos
Citratos/química , Emulsificantes/química , Cristais Líquidos/química , Óleos/química , Ácidos Oleicos/química , Álcoois Graxos/química , Glicerídeos/química , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química , Triglicerídeos/química , Água/química , alfa-Tocoferol/química
20.
Colloids Surf B Biointerfaces ; 89: 53-60, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21958537

RESUMO

To fully utilize the extended contact time of gel formulations a novel formulation with drug containing catanionic aggregates offering prolonged drug release and skin penetration were investigated. This study aimed to further explore the drug release process from catanionic vesicles in gels. Catanionic vesicles were formed from alprenolol and sodium dodecyl sulphate. Physical gels composed of catanionic vesicles and a SoftCAT polymer were used as well as covalent Carbopol gels. Drug release was measured in vitro using a modified USP paddle method and the skin penetration was studied using dermatomized pig ear skin mounted in horizontal Ussing chambers. The aggregate structure was visualized with cryo-TEM during the drug release and skin penetration process. The study results show that catanionic vesicles are present in the formulations throughout the drug release process and during the clinically relevant skin application time. Hence, the decreased skin penetration rate stems from the prolonged release of drug substance from the gels. The rheological investigation shows that the gel structure of the physically cross-linked gels is maintained even as the drug substance is released and the gel volume is decreased. These findings indicate that the applicability of formulations like these is a future possibility.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Alprenolol/administração & dosagem , Cátions , Géis , Pele/efeitos dos fármacos , Dodecilsulfato de Sódio/química , Animais , Cromatografia Líquida de Alta Pressão , Microscopia Eletrônica de Transmissão , Reologia , Pele/metabolismo , Absorção Cutânea , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...