Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7777, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522370

RESUMO

Large-scale arrays of quantum-dot spin qubits in Si/SiGe quantum wells require large or tunable energy splittings of the valley states associated with degenerate conduction band minima. Existing proposals to deterministically enhance the valley splitting rely on sharp interfaces or modifications in the quantum well barriers that can be difficult to grow. Here, we propose and demonstrate a new heterostructure, the "Wiggle Well", whose key feature is Ge concentration oscillations inside the quantum well. Experimentally, we show that placing Ge in the quantum well does not significantly impact our ability to form and manipulate single-electron quantum dots. We further observe large and widely tunable valley splittings, from 54 to 239 µeV. Tight-binding calculations, and the tunability of the valley splitting, indicate that these results can mainly be attributed to random concentration fluctuations that are amplified by the presence of Ge alloy in the heterostructure, as opposed to a deterministic enhancement due to the concentration oscillations. Quantitative predictions for several other heterostructures point to the Wiggle Well as a robust method for reliably enhancing the valley splitting in future qubit devices.

2.
Phys Rev Lett ; 128(14): 146802, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476478

RESUMO

The energies of valley-orbit states in silicon quantum dots are determined by an as yet poorly understood interplay between interface roughness, orbital confinement, and electron interactions. Here, we report measurements of one- and two-electron valley-orbit state energies as the dot potential is modified by changing gate voltages, and we calculate these same energies using full configuration interaction calculations. The results enable an understanding of the interplay between the physical contributions and enable a new probe of the quantum well interface.

3.
Nanotechnology ; 33(12)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34962232

RESUMO

The simulated noise used to benchmark wavelet edge detection in this work was described incorrectly. The correct description is given here, and new results based on noise that matches the original description are provided. The results support our original conclusion, which is that wavelet edge detection outperforms thresholding in the presence of white noise and 1/fnoise.

4.
Phys Rev Lett ; 127(12): 127701, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597063

RESUMO

Semiconductor quantum dots containing more than one electron have found wide application in qubits, where they enable readout and enhance polarizability. However, coherent control in such dots has typically been restricted to only the lowest two levels, and such control in the strongly interacting regime has not been realized. Here we report quantum control of eight different transitions in a silicon-based quantum dot. We use qubit readout to perform spectroscopy, revealing a dense set of energy levels with characteristic spacing far smaller than the single-particle energy. By comparing with full configuration interaction calculations, we argue that the dense set of levels arises from Wigner-molecule physics.

5.
Nanotechnology ; 31(50): 505001, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33043895

RESUMO

We present an improved fabrication process for overlapping aluminum gate quantum dot devices on Si/SiGe heterostructures that incorporates low-temperature inter-gate oxidation, thermal annealing of gate oxide, on-chip electrostatic discharge (ESD) protection and an optimized interconnect process for thermal budget considerations. This process reduces gate-to-gate leakage, damage from ESD, dewetting of aluminum and formation of undesired alloys in device interconnects. Additionally, cross-sectional scanning transmission electron microscopy (STEM) images elucidate gate electrode morphology in the active region as device geometry is varied. We show that overlapping aluminum gate layers homogeneously conform to the topology beneath them, independent of gate geometry and identify critical dimensions in the gate geometry where pattern transfer becomes non-ideal, causing device failure.

6.
Nat Commun ; 10(1): 5641, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822678

RESUMO

A fundamental challenge for quantum dot spin qubits is to extend the strength and range of qubit interactions while suppressing their coupling to the environment, since both effects have electrical origins. Key tools include the ability to take advantage of physical resources in different regimes, and to access optimal working points, sweet spots, where dephasing is minimized. Here, we explore an important resource for singlet-triplet qubits: a transverse sweet spot (TSS) that enables transitions between qubit states, a strong dipolar coupling, and leading-order protection from electrical fluctuations. Of particular interest is the possibility of transitioning between the TSS and symmetric operating points while remaining continuously protected. This arrangement is ideal for coupling qubits to a microwave cavity, because it combines tunability of the coupling with noise insensitivity. We perform simulations with [Formula: see text]-type electrical noise, demonstrating that two-qubit gates mediated by a resonator can achieve fidelities >99% under realistic conditions.

7.
ACS Appl Mater Interfaces ; 11(12): 11970-11975, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30807087

RESUMO

Thermal management efforts in nanoscale devices must consider both the thermal properties of the constituent materials and the interfaces connecting them. It is currently unclear whether alloy/alloy semiconductor superlattices such as InAlAs/InGaAs have lower thermal conductivities than their constituent alloys. We report measurements of the crossplane thermal resistivity of InAlAs/InGaAs superlattices at room temperature, showing that the superlattice resistivities are larger by a factor of 1.2-1.6 than that of the constituent bulk materials, depending on the strain state and composition. We show that the additional resistance present in these superlattices can be tuned by a factor of 2.5 by altering the lattice mismatch and thereby the phonon-mode mismatch at the interfaces, a principle that is commonly assumed for superlattices but has not been experimentally verified without adding new elements to the layers. We find that the additional resistance in superlattices does not increase significantly when the layer thickness is decreased from 4 to 2 nm. We also report measurements of 250-1000 nm thick films of undoped InGaAs and InAlAs lattice-matched to InP substrates, for there is no published thermal conductivity value for the latter, and we find it to be 2.24 ± 0.09 at 22 °C, which is ∼2.7 times smaller than the widely used estimates.

8.
Nature ; 555(7698): 633-637, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29443962

RESUMO

Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

9.
Nat Commun ; 8: 15923, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643778

RESUMO

Quantum computing promises significant speed-up for certain types of computational problems. However, robust implementations of semiconducting qubits must overcome the effects of charge noise that currently limit coherence during gate operations. Here we describe a scheme for protecting solid-state qubits from uniform electric field fluctuations by generalizing the concept of a decoherence-free subspace for spins, and we propose a specific physical implementation: a quadrupole charge qubit formed in a triple quantum dot. The unique design of the quadrupole qubit enables a particularly simple pulse sequence for suppressing the effects of noise during gate operations. Simulations yield gate fidelities 10-1,000 times better than traditional charge qubits, depending on the magnitude of the environmental noise. Our results suggest that any qubit scheme employing Coulomb interactions (for example, encoded spin qubits or two-qubit gates) could benefit from such a quadrupolar design.

10.
Nanotechnology ; 27(15): 154002, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26938505

RESUMO

We report the fabrication and characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. In the past, all gate-defined quantum dots in Si/SiGe heterostructures were formed on top of strain-graded virtual substrates. The strain grading process necessarily introduces misfit dislocations into a heterostructure, and these defects introduce lateral strain inhomogeneities, mosaic tilt, and threading dislocations. The use of a SiGe nanomembrane as the virtual substrate enables the strain relaxation to be entirely elastic, eliminating the need for misfit dislocations. However, in this approach the formation of the heterostructure is more complicated, involving two separate epitaxial growth procedures separated by a wet-transfer process that results in a buried non-epitaxial interface 625 nm from the quantum dot. We demonstrate that in spite of this buried interface in close proximity to the device, a double quantum dot can be formed that is controllable enough to enable tuning of the inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of an applied magnetic field.

11.
Phys Rev Lett ; 115(10): 106802, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382693

RESUMO

We demonstrate coherent driving of a single electron spin using second-harmonic excitation in a Si/SiGe quantum dot. Our estimates suggest that the anharmonic dot confining potential combined with a gradient in the transverse magnetic field dominates the second-harmonic response. As expected, the Rabi frequency depends quadratically on the driving amplitude, and the periodicity with respect to the phase of the drive is twice that of the fundamental harmonic. The maximum Rabi frequency observed for the second harmonic is just a factor of 2 lower than that achieved for the first harmonic when driving at the same power. Combined with the lower demands on microwave circuitry when operating at half the qubit frequency, these observations indicate that second-harmonic driving can be a useful technique for future quantum computation architectures.

12.
Nanotechnology ; 26(21): 215201, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25930073

RESUMO

The operation of solid-state qubits often relies on single-shot readout using a nanoelectronic charge sensor, and the detection of events in a noisy sensor signal is crucial for high fidelity readout of such qubits. The most common detection scheme, comparing the signal to a threshold value, is accurate at low noise levels but is not robust to low-frequency noise and signal drift. We describe an alternative method for identifying charge sensor events using wavelet edge detection. The technique is convenient to use and we show that, with realistic signals and a single tunable parameter, wavelet detection can outperform thresholding and is significantly more tolerant to 1/f and low-frequency noise.

13.
Nat Nanotechnol ; 10(3): 243-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25686478

RESUMO

An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. This qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. However, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the 'sweet spot'. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving we achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X-Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.

14.
Phys Rev Lett ; 115(25): 256101, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722927

RESUMO

We report measurements of the interfacial thermal resistance between mechanically joined single crystals of silicon, the results of which are up to a factor of 5 times lower than any previously reported thermal resistances of mechanically created interfaces. Detailed characterization of the interfaces is presented, as well as a theoretical model incorporating the critical properties determining the interfacial thermal resistance in the experiments. The results demonstrate that van der Waals interfaces can have very low thermal resistance, with important implications for membrane-based micro- and nanoelectronics.

15.
Proc Natl Acad Sci U S A ; 111(33): 11938-42, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25092298

RESUMO

The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit's Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T2* is determined. By measuring T2* at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T2* arising from charge noise and from coupling to nuclear spins.

16.
Nat Nanotechnol ; 9(9): 666-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108810

RESUMO

Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 µs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 µs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.

17.
Nat Commun ; 5: 3020, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24389977

RESUMO

An important goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2(*). Most manipulations of electron spins in quantum dots have focused on the construction and control of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron. Here we perform quantum manipulations on a system with three electrons per double quantum dot. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between three-electron quantum states. Certain pulse sequences yield coherent oscillations fast enough that more than 100 oscillations are visible within a T2(*) time. The minimum oscillation frequency we observe is faster than 5 GHz. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow.

19.
Phys Rev Lett ; 108(14): 140503, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540779

RESUMO

We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S(2)=3/4 (S=1/2) and S(z)=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

20.
Phys Rev Lett ; 108(4): 046808, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400879

RESUMO

We investigate the lifetime of two-electron spin states in a few-electron Si/SiGe double dot. At the transition between the (1,1) and (0,2) charge occupations, Pauli spin blockade provides a readout mechanism for the spin state. We use the statistics of repeated single-shot measurements to extract the lifetimes of multiple states simultaneously. When the magnetic field is zero, we find that all three triplet states have equal lifetimes, as expected, and this time is ~10 ms. When the field is nonzero, the T(0) lifetime is unchanged, whereas the T- lifetime increases monotonically with the field, reaching 3 sec at 1 T.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...