Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272314

RESUMO

ImportanceGenomic footprints of pathogens shed by infected individuals can be traced in environmental samples. Analysis of these samples can be employed for noninvasive surveillance of infectious diseases. ObjectiveTo evaluate the efficacy of environmental surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for predicting COVID-19 cases in a college dormitory. DesignUsing a prospective experimental design, air, surface swabs, and wastewater samples were collected from a college dormitory from March to May 2021. Students were randomly screened for COVID-19 during the study period. SARS-CoV-2 in environmental samples was concentrated with electronegative filtration and quantified using Volcano 2nd Generation-qPCR. Descriptive analyses were conducted to examine the associations between time-lagged SARS-CoV-2 in environmental samples and clinically diagnosed COVID-19 cases. SettingThis study was conducted in a residential dormitory at the University of Miami, Coral Gables campus, FL, USA. The dormitory housed about 500 students. ParticipantsStudents from the dormitory were randomly screened, for COVID-19 for 2-3 days / week while entering or exiting the dormitory. Main OutcomeClinically diagnosed COVID-19 cases were of our main interest. We hypothesized that SARS-CoV-2 detection in environmental samples was an indicator of the presence of local COVID-19 cases in the dormitory, and SARS-CoV-2 can be detected in the environmental samples several days prior to the clinical diagnosis of COVID-19 cases. ResultsSARS-CoV-2 genomic footprints were detected in air, surface swab and wastewater samples on 52 (63.4%), 40 (50.0%) and 57 (68.6%) days, respectively, during the study period. On 19 (24%) of 78 days SARS-CoV-2 was detected in all three sample types. Clinically diagnosed COVID-19 cases were reported on 11 days during the study period and SARS-CoV-2 was also detected two days before the case diagnosis on all 11 (100%), 9 (81.8%) and 8 (72.7%) days in air, surface swab and wastewater samples, respectively. ConclusionProactive environmental surveillance of SARS-CoV-2 or other pathogens in a community/public setting has potential to guide targeted measures to contain and/or mitigate infectious disease outbreaks. Key PointsO_ST_ABSQuestionC_ST_ABSHow effective is environmental surveillance of SARS-CoV-2 in public places for early detection of COVID-19 cases in a community? FindingsAll clinically confirmed COVID-19 cases were predicted with the aid of 2 day lagged SARS-CoV-2 in environmental samples in a college dormitory. However, the prediction efficiency varied by sample type: best prediction by air samples, followed by wastewater and surface swab samples. SARS-CoV-2 was also detected in these samples even on days without any reported cases of COVID-19, suggesting underreporting of COVID-19 cases. MeaningSARS-CoV-2 can be detected in environmental samples several days prior to clinical reporting of COVID-19 cases. Thus, proactive environmental surveillance of microbiome in public places can serve as a mean for early detection of location-time specific outbreaks of infectious diseases. It can also be used for underreporting of infectious diseases.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20120832

RESUMO

When South Florida became a hotspot for COVID-19 disease in March 2020, we faced an urgent need to develop test capability to detect SARS-CoV-2 infection. We assembled a transdisciplinary team of knowledgeable and dedicated physicians, scientists, technologists and administrators, who rapidly built a multi-platform, PCR- and serology-based detection program, established drive-thru facilities and drafted and implemented guidelines that enabled efficient testing of our patients and employees. This process was extremely complex, due to the limited availability of needed reagents, but outreach to our research scientists and to multiple diagnostic laboratory companies and government officials enabled us to implement both FDA authorized and laboratory developed testing (LDT)-based testing protocols. We analyzed our workforce needs and created teams of appropriately skilled and certified workers, to safely process patient samples and conduct SARS-CoV-2 testing and contact tracing. We initiated smart test ordering, interfaced all testing platforms with our electronic medical record, and went from zero testing capacity, to testing hundreds of healthcare workers and patients daily, within three weeks. We believe our experience can inform the efforts of others, when faced with a crisis situation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...