Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432213

RESUMO

The thermal radiation phenomenon is more crucial than other thermal transportation phenomena at elevated temperatures (>300 °C). Therefore, infrared radiation resistance and its performance on thermal conduction of nanofibrous aerogel with Titanium oxide (TiO2) filler have been investigated compared to control groups (silica nanofibrous aerogels with and without filler). Nanofibrous aerogel has been produced by electrospun silica nanofibers. Later, TiO2 opacifier and a non-opacifier filled materials were prepared by a solution homogenization method and then freeze-dried to obtain particle-filled nanofibrous aerogel. Moreover, the thermal radiation conductivity of the composite was calculated by numerical simulation, and the effect of the anti-infrared radiation of the TiO2 opacifier was obtained. The fascinating inhibited infrared radiation transmission performance (infrared transmittance ~67% at 3 µm) and excellent thermal insulation effect (thermal conductivity of 0.019 Wm−1K−1 at room temperature) and maximum compressive strengths (3.22 kPa) of silica nanofibrous aerogel with TiO2 opacifier were verified. Excellent thermal insulation, compression and thermal stability properties show its potential for practical application in industrial production. The successful synthesis of this material may shed light on the development of other insulative ceramic aerogels.

2.
J Biomed Mater Res B Appl Biomater ; 110(8): 1899-1910, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35253986

RESUMO

Copper ions (Cu) grafted chitosan coating was prepared using the pneumatic spraying method on the silicone rubber surface. Coating's surface properties, morphology, composition, Cu releasing behavior, antibacterial, and anti-inflammatory activities are investigated and discussed. Surface properties, composition, and morphology were investigated by scanning electron microscopy (SEM) and contact angle measurements. The antibacterial activity has been tested with Escherichia coli and Staphylococcus aureus suspensions in vitro. Besides, the morphology of the biofilm was inspected with a field emission SEM. To evaluate the anti-inflammatory activity and biosafety of the coating in vivo, the optimized coating samples and control groups were implanted subcutaneously into the back of mice. The bacterial environment model was established by injection of the bacterial suspension. The morphology and bacterial adhered on the surface of catheters and the surrounding tissues were analyzed after 5 days of implantation. As in vitro results, the number of adhered bacterial on the surface of the silicon rubber surface was decreased, and the anti-inflammatory rate was increased by the intensify of the Cu content in chitosan coating. As for in vivo results, after 5 days of implantation, there was no evident inflammation in the surrounding tissues of all catheters in all without the S. aureus injected group. In the injected chitosan/Cu coated group; the inflammation, the number of the adhered bacteria were observed less than other injected samples without Cu; no inflammation were noticeable. Results indicate that the Cu-modified chitosan coating can confer excellent antibacterial and anti-inflammatory activity as applied on medical catheters.


Assuntos
Quitosana , Staphylococcus aureus , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios , Catéteres , Quitosana/farmacologia , Cobre/farmacologia , Escherichia coli , Inflamação , Camundongos
3.
J Biomed Mater Res B Appl Biomater ; 110(1): 239-248, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34236133

RESUMO

Biosafety of AZ31B magnesium (Mg) alloy and the effect of its degradation products on tissues, organs, and whole systems are highly needed to be evaluated before clinical application. This study serves a wide variety of safety evaluations of biodegradable AZ31B alloy on nerve cells. As a result of this in vitro study, the maximum aluminum (Al) ion and Mg ion concentrations in the medium were estimated to be 22 µmol/L and 2.75 mmol/L, respectively, during degradation. In addition, the corresponding cell mortality was observed to be 36% and lower than 5% according to the resistance curves of the cell to Mg and Al ions. Furthermore, the maximum Al ion and Mg ion concentrations in serum and cerebrospinal fluid were detected to be 26.1 µmol/L and 1.2 mmol/L, respectively, for 5 months implantation. Combining the result of in vivo dialysis with the result of ion tolerance assay experiments, the actual death rate of nerve cells is estimated between 4 and 10% in vivo, which is lower than the result of in vitro cytotoxicity evaluation. Moreover, no psychomotor disability during clinical studies is observed. Consequently, stent made of AZ31B alloy with surface treatment is feasible for carotid artery stenosis, and it is safe in terms of cell viability on the nervous system.


Assuntos
Contenção de Riscos Biológicos , Magnésio , Ligas/farmacologia , Artérias Carótidas , Magnésio/farmacologia , Teste de Materiais , Stents
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...