Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1294520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937209

RESUMO

Aerogels are remarkable nanoporous materials with unique properties such as low density, high porosity, high specific surface area, and interconnected pore networks. In addition, their ability to be synthesized from various precursors such as inorganics, organics, or hybrid, and the tunability of their properties make them very attractive for many applications such as adsorption, thermal insulation, catalysts, tissue engineering, and drug delivery. The physical and chemical properties and pore structure of aerogels are crucial in determining their application areas. Moreover, it is possible to tailor the aerogel properties to meet the specific requirements of each application. This review presents a comprehensive review of synthesis conditions and process parameters in tailoring aerogel properties. The effective parameters from the dissolution of the precursor step to the supercritical drying step, including the carbonization process for carbon aerogels, are investigated from the studies reported in the literature.

2.
Turk J Chem ; 46(4): 999-1010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37538753

RESUMO

Chemical absorption of CO2 into aqueous amine solutions using a nonstirred bubble column was experimentally investigated. The performance of CO2 absorption of four different primary and secondary amines including monoethanolamine (MEA), piperazine (PZ), 2-piperidineethanol (2PE), and homopiperazine (HPZ) were compared. The effects of initial concentration of amine, the inlet mole fraction of CO2, and solution temperature on the rate of CO2 absorption and CO2 loading (mol CO2/mol amine) were studied in the range of 0.02-1 M, 0.10-0.15, and 25-40 °C, respectively. The effect of the presence of copper ions in the amine solution on CO2 loading was also studied. By comparison of the breakthrough curves of the amines at different operational conditions, it was revealed that the shortest and longest time for the appearance of the breakthrough point was observed for MEA and HPZ solutions, respectively. CO2 loading of MEA, 2PE, PZ, and HPZ aqueous solutions at 25 °C, 0.2 M of initial concentration of amine, and 0.15 of inlet mole fraction of CO2 were 1.06, 1.14, 1.13, and 1.18 mol CO2/mol amine, respectively. By decreasing the inlet mole fraction of CO2 from 0.15 to 0.10, CO2 loading slightly decreased. As the initial concentration of amine and temperature decreased, CO2 loading increased. Also, the presence of copper ions in the absorbent solution resulted in a decrease in the CO2 loading of MEA and HPZ aqueous solutions. In case of PZ and 2PE amines, adding copper ions led to precipitation even at low copper ion concentrations.

3.
Turk J Chem ; 45(3): 673-682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385860

RESUMO

Four commercial monolithic diesel oxidation catalysts (DOCs) with two different platinum group metal (PGM) loadings and Pt:Pd ratios of 1:0, 2:1, 3:1 (w/w) were investigated systematically for CO, C3H6, and NO oxidation, CO-C3H6 co-oxidation, and CO-C3H6-NO oxidation reactions via transient activity measurements in a simulated diesel engine exhaust environment. As PGM loading increased, light-off curves shifted to lower temperatures for individual and co-oxidation reactions of CO and C3H6. CO and C3H6 were observed to inhibit theoxidation of themselves and each other. Addition of Pd to Pt was found to enhance CO and C3H6 oxidation performance of the catalysts while the presence and amount of Pd was found to increase the extent of self-inhibition of NO oxidation. NO inhibited CO and C3H6 oxidation reactions while NO oxidation performance was enhanced in the presence of CO and C3H6 probably due to the occurrence of reduced Pt and Pd sites during CO and C3H6 oxidations. The optimum Pt:Pd ratio for individual and co-oxidations of CO, C3H6, and NO was found to be Pt:Pd = 3:1 (w/w) in the range of experimental conditions investigated in this study.

4.
J Control Release ; 332: 40-63, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33600880

RESUMO

Aerogels are the lightest processed solid materials on Earth and with the largest empty volume fraction in their structure. Composition versatility, modularity, and feasibility of industrial scale manufacturing are behind the fast emergence of aerogels in the drug delivery field. Compared to other 3D materials, the high porosity (interconnected mesopores) and high specific surface area of aerogels may allow faster loading of small-molecule drugs, less constrained access to inner regions of the matrix, and more efficient interactions of the biological milieu with the polymer matrix. Processing in supercritical CO2 medium for both aerogel production (drying) and drug loading (impregnation) has remarkable advantages such as absence of an oxidizing environment, clean manufacture, and easiness for the scale-up under good manufacturing practices. The aerogel solid skeleton dictates the chemical affinity to the different drugs, which in turn determines the loading efficiency and the release pattern. Aerogels can be used to increase the solubility of BCS Class II and IV drugs because the drug can be deposited in amorphous state onto the large surface area of the skeleton, which facilitates a rapid contact with the body fluids, dissolution, and release. Conversely, tuning the aerogel structure by functionalization with drug-binding moieties or stimuli-responsive components, application of coatings and incorporation of drug-loaded aerogels into other matrices may enable site-specific, stimuli-responsive, or prolonged drug release. The present review deals with last decade advances in aerogels for drug delivery. An special focus is paid first on the loading efficiency of active ingredients and release kinetics under biorelevant conditions. Subsequent sections deal with aerogels intended to address specific therapeutic demands. In addition to oral delivery, the physical properties of the aerogels appear to be very advantageous for mucosal administration routes, such as pulmonary, nasal, or transdermal. A specific section devoted to recent achievements in gene therapy and theranostics is also included. In the last section, scale up strategies and life cycle assessment are comprehensively addressed.


Assuntos
Dessecação , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Géis , Solubilidade
5.
Molecules ; 24(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405225

RESUMO

The effects of design and operating parameters on the superficial velocity at the onset of circulatory motion and the residence time of alginate aerogel particles in a laboratory scale Wurster fluidized bed were investigated. Several sets of experiments were conducted by varying Wurster tube diameter, Wurster tube length, batch volume and partition gap height. The superficial velocities for Wurster tube with 10 cm diameter were lower than the tube with 8 cm diameter. Superficial velocities increased with increasing batch volume and partition gap height. Moreover, increasing batch volume and partition gap height led to a decrease in the particle residence time in the Wurster tube. The results showed that there is an upper limit for each parameter in order to obtain a circulatory motion of the particles. It was found that the partition gap height should be 2 cm for proper particle circulation. Maximum batch volume for the tube with 10 cm diameter was found as 500 mL whereas maximum batch volume was 250 mL for the tube with 8 cm diameter. The fluidization behavior of the aerogel particles investigated in this study could be described by the general fluidization diagrams in the literature.


Assuntos
Alginatos/química , Hidrodinâmica , Géis
6.
Molecules ; 24(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083427

RESUMO

Aerogels are a special class of nanostructured materials with very high porosity and tunable physicochemical properties. Although a few types of aerogels have already reached the market in construction materials, textiles and aerospace engineering, the full potential of aerogels is still to be assessed for other technology sectors. Based on current efforts to address the material supply chain by a circular economy approach and longevity as well as quality of life with biotechnological methods, environmental and life science applications are two emerging market opportunities where the use of aerogels needs to be further explored and evaluated in a multidisciplinary approach. In this opinion paper, the relevance of the topic is put into context and the corresponding current research efforts on aerogel technology are outlined. Furthermore, key challenges to be solved in order to create materials by design, reproducible process technology and society-centered solutions specifically for the two abovementioned technology sectors are analyzed. Overall, advances in aerogel technology can yield innovative and integrated solutions for environmental and life sciences which in turn can help improve both the welfare of population and to move towards cleaner and smarter supply chain solutions.


Assuntos
Géis/química , Nanoestruturas/química , Porosidade
7.
R Soc Open Sci ; 5(11): 180802, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564391

RESUMO

In this study, we developed a new type of microphotoreactor based on an optofluidic waveguide with aqueous liquid core fabricated inside a nanoporous aerogel. To this end, we synthesized a hydrophobic silica aerogel monolith with a density of 0.22 g cm-3 and a low refractive index of 1.06 that-from the optical point of view-effectively behaves like solid air. Subsequently, we drilled an L-shaped channel within the monolith that confined both the aqueous core liquid and the guided light, the latter property arising due to total internal reflection of light from the liquid-aerogel interface. We characterized the efficiency of light guiding in liquid-filled channel and-using the light delivered by waveguiding-we carried out photochemical reactions in the channel filled with aqueous solutions of methylene blue dye. We demonstrated that methylene blue could be efficiently degraded in the optofluidic photoreactor, with conversion increasing with increasing power of the incident light. The presented optofluidic microphotoreactor represents a versatile platform employing light guiding concept of conventional optical fibres for performing photochemical reactions.

8.
Talanta ; 176: 8-16, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917809

RESUMO

Sodium tripolyphosphate (STPP) and sodium citrate dihydrate (sodium citrate) are the most widely used components in detergent formulations. Here, we characterized these two components on glass surfaces to assess their possible exposures from white spots on dishwasher-washed dishes. Ultraviolet/visible near infrared spectroscopy (UV/Vis-NIR), Fourier transform infrared spectroscopy (FTIR) in the attenuated total reflectance mode (ATR-FTIR), Raman spectroscopy and laser ablation-inductively coupled plasma mass spectroscopy (LA-ICP-MS) were utilized to design calibration models for a range of STPP and sodium citrate concentrations 1-8% w/w) precipitated on glass surfaces. STPP and sodium citrate residues on the dishwasher-washed dishes were also determined quantitatively using ATR-FTIR by utilizing these calibration models. In addition, cytotoxicity assays were performed to elucidate the influence of STPP and sodium citrate on human embryonic kidney cell survival. Cell viability results showed a decreasing trend in the number of cells cultured with increasing concentrations and exposure time of STPP and sodium citrate in the medium. Cell survival was minimum on day four when cells were exposed to 84mg/kg of body/day of STPP and sodium citrate separately. This is the first report about detection and quantification of STTP and sodium citrate and assessment of cytotoxicity. Results of this study provide opportunities for the quantification of detergent residues on dishes and assessment of their possible toxicity on live cells.

9.
Bioresour Technol ; 250: 764-769, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29227826

RESUMO

In this study, we applied a second round of random mutagenesis using ethyl methanesulfonate to further increase the lipid productivity of a Chlorella vulgaris mutant strain. We generated a mutant (UV715-EMS25) with a lipid content and biomass that were respectively 67% and 35% higher than those of the wild type (WT). The highest achieved lipid productivity in UV715-EMS25 was 91 mg L-1 day-1. Gas chromatography-mass spectrophotometric analysis revealed that the fatty acid methyl ester content of the mutant was 3.9-fold higher compared with that of WT cells. Amounts of saturated and monounsaturated fatty acids were also higher in the mutant, while the total amounts of polyunsaturated fatty acids were lower. Finally, the mutant displayed superior lipid productivity compared with the WT during pilot-scale cultivation in a flat panel photobioreactor. All these results demonstrate that UV715-EMS25 is highly suitable for biodiesel production.


Assuntos
Chlorella vulgaris , Ácidos Graxos , Biocombustíveis , Biomassa , Chlorella , Lipídeos , Mutagênese
10.
Gels ; 4(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30674780

RESUMO

Supercritical drying of gels is considered as the most important step of aerogel production since it enables preservation of the three-dimensional pore structure which lead to unique material properties such as high porosity, low density, and large surface area. An understanding of the kinetics of supercritical drying is necessary to provide insight into material development, scale-up, and optimization of the aerogel manufacturing process. Thus, investigation of supercritical drying is gaining increased attention in recent years. This review paper covers the experimental considerations and techniques to study the kinetics of supercritical drying, fundamental mass transfer mechanisms during the drying process and modeling efforts to predict the drying kinetics for varying operating conditions and gel properties. Transport phenomena involving diffusion, convection, spillage by volume expansion, and axial dispersion are discussed by providing the fundamental equations and empirical correlations to predict transfer coefficients. A detailed review of literature covering experimental and theoretical studies on kinetics of supercritical drying is presented.

11.
J Control Release ; 177: 51-63, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24394377

RESUMO

Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.


Assuntos
Sistemas de Liberação de Medicamentos , Alginatos/química , Animais , Celulose/química , Humanos , Dióxido de Silício/química , Amido/química , Titânio/química
12.
Ultrason Sonochem ; 21(2): 854-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24094692

RESUMO

Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV-visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min(-1) were associated with the high values of surface area, i.e. 70 m(2)/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.


Assuntos
Cobre/química , Peróxido de Hidrogênio/química , Ferro/química , Ultrassom , Catálise , Nanopartículas/química , Água/química
13.
Bioresour Technol ; 123: 723-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22939187

RESUMO

A number of supported Pt catalysts have been prepared by supercritical carbon dioxide deposition technique using various supports. The reduction of Pt precursor to metal performed by heat treatment under nitrogen flow. The prepared catalysts were evaluated for gasification of wheat straw biomass hydrolysates and glucose solution for hydrogen-rich gas production. The activities of the catalysts were highly affected by distribution, amount and particle sizes of platinum on the support. In general carbon-based supported Pt catalysts exhibited better catalytic activity compared to other supports to be used. Compared to biomass hydrolysate feed, gasification of glucose always resulted in higher volume of gas mixture, however, hydrogen selectivity was decreased in all catalyst except multi-walled carbon nanotube. The deposition of Pt particles inner side of that support makes the large organic substrates inaccessible to reach and react with those metal particles.


Assuntos
Biomassa , Cromatografia com Fluido Supercrítico/métodos , Hidrogênio/metabolismo , Lignina/metabolismo , Platina/química , Catálise , Glucose/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Triticum/química
14.
J Biomed Mater Res A ; 100(5): 1307-15, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22374682

RESUMO

A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications.


Assuntos
Química Farmacêutica/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cetoprofeno/farmacologia , Polietilenoglicóis/química , Dióxido de Silício/química , Adsorção/efeitos dos fármacos , Preparações de Ação Retardada , Difusão/efeitos dos fármacos , Amarelo de Eosina-(YS) , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Cetoprofeno/química , Porosidade/efeitos dos fármacos
15.
Nanoscale Res Lett ; 6: 487, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21827683

RESUMO

Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 1): 021116, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18351996

RESUMO

By introducing three well-defined dimensionless numbers, we establish the link between the scale dilatation method able to estimate master (i.e., unique) singular behaviors of the one-component fluid subclass and the universal crossover functions recently estimated [Garrabos and Bervillier, Phys. Rev. E 74, 021113 (2006)] from the bounded results of the massive renormalization scheme applied to the Phi(d)(4)(n) model of scalar order parameter (n=1) and three dimensions (d=3), representative of the Ising-like universality class. The master (i.e., rescaled) crossover functions are then able to fit the singular behaviors of any one-component fluid without adjustable parameter, using only one critical energy scale factor, one critical length scale factor, and two dimensionless asymptotic scale factors, which characterize the fluid critical interaction cell at its liquid-gas critical point. An additional adjustable parameter accounts for quantum effects in light fluids at the critical temperature. The effective extension of the thermal field range along the critical isochore where the master crossover functions seems to be valid corresponds to a correlation length greater than three times the effective range of the microscopic short-range molecular interaction.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061112, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17677225

RESUMO

We present the master (i.e., unique) behavior of the squared capillary length-the so-called Sugden factor-as a function of the temperaturelike field along the critical isochore, asymptotically close to the gas-liquid critical point of about twenty (one-component) fluids. This master behavior is obtained using the scale dilatation of the relevant physical fields of the one-component fluids. The scale dilatation method introduces the fluid-dependent scale factors in a manner analog to the linear relations between physical fields and scaling fields needed by the renormalization theory applied to any physical system belonging to the Ising-like universality class. The master behavior for the Sugden factor satisfies hyperscaling. It can be asymptotically fitted by the leading terms of the theoretical crossover functions for the correlation length and the susceptibility in the homogeneous domain, recently obtained from massive renormalization in field theory. In the absence of corresponding estimation of the theoretical crossover functions for the interfacial tension, we define the range of the temperaturelike field where the master leading power law can be practically used to predict the singular behavior of the Sugden factor, in conformity with the theoretical description provided by the massive renormalization scheme within the extended asymptotic domain of the one-component fluid "subclass."

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(2 Pt 2): 026125, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16605416

RESUMO

We present the master (i.e., unique) behavior of the correlation length, as a function of the thermal field along the critical isochore, asymptotically close to the gas-liquid critical point of xenon, krypton, argon, helium-3, sulfur hexafluoride, carbon dioxide, and heavy water. It is remarkable that this unicity extends to the correction-to-scaling terms. The critical parameter set, which contains all the needed information to reveal the master behavior, is composed of four thermodynamic coordinates of the critical point and one adjustable parameter which accounts for quantum effects in the helium-3 case. We use a scale dilatation method applied to the relevant physical variables of the one-component fluid subclass, in analogy with the basic hypothesis of the renormalization theory. This master behavior for the correlation length satisfies hyperscaling. We finally estimate the thermal field extent where the critical crossover of the singular thermodynamic and correlation functions deviates from the theoretical crossover function obtained from field theory.

19.
J Phys Chem B ; 109(7): 2617-24, 2005 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16851266

RESUMO

Carbon-aerogel-supported ruthenium nanoparticles were synthesized by impregnating carbon aerogels with Ru(acac)3 or Ru(cod)(tmhd)2 from supercritical carbon dioxide (scCO2) solutions, followed by thermal reduction of these precursors. Two different carbon aerogels with pore diameters of 4 and 21 nm were synthesized. The kinetics and the thermodynamics of impregnation of carbon aerogels with the ruthenium coordination complexes were studied. The approach-to-equilibrium data indicated very fast adsorption, and the adsorption isotherms were found to follow the Langmuir model. The impregnated carbon aerogel complexes were reduced thermally at different temperatures between 300 and 1000 degrees C in the presence of nitrogen. The resulting nanocomposites were characterized using transmission electron microscopy (TEM) and hydrogen chemisorption. TEM micrographs showed that the ruthenium nanoparticles were dispersed homogeneously throughout the porous carbon aerogel matrix, and the average sizes obtained under different conditions ranged from 1.7 to 3.8 nm. Once complete decomposition of the precursor had been achieved, the mean size of the ruthenium particles increased with increasing reduction temperature.


Assuntos
Carbono/química , Nanopartículas/química , Nanotecnologia/métodos , Rutênio/química , Adsorção , Eletroquímica , Hidrogênio/química , Cinética , Microscopia Eletrônica de Transmissão , Modelos Químicos , Nanotubos de Carbono/química , Platina/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...