Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neurosci ; 31(30): 10948-70, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795545

RESUMO

Although vastly outnumbered, inhibitory interneurons critically pace and synchronize excitatory principal cell populations to coordinate cortical information processing. Precision in this control relies upon a remarkable diversity of interneurons primarily determined during embryogenesis by genetic restriction of neuronal potential at the progenitor stage. Like their neocortical counterparts, hippocampal interneurons arise from medial and caudal ganglionic eminence (MGE and CGE) precursors. However, while studies of the early specification of neocortical interneurons are rapidly advancing, similar lineage analyses of hippocampal interneurons have lagged. A "hippocampocentric" investigation is necessary as several hippocampal interneuron subtypes remain poorly represented in the neocortical literature. Thus, we investigated the spatiotemporal origins of hippocampal interneurons using transgenic mice that specifically report MGE- and CGE-derived interneurons either constitutively or inducibly. We found that hippocampal interneurons are produced in two neurogenic waves between E9-E12 and E12-E16 from MGE and CGE, respectively, and invade the hippocampus by E14. In the mature hippocampus, CGE-derived interneurons primarily localize to superficial layers in strata lacunosum moleculare and deep radiatum, while MGE-derived interneurons readily populate all layers with preference for strata pyramidale and oriens. Combined molecular, anatomical, and electrophysiological interrogation of MGE/CGE-derived interneurons revealed that MGE produces parvalbumin-, somatostatin-, and nitric oxide synthase-expressing interneurons including fast-spiking basket, bistratified, axo-axonic, oriens-lacunosum moleculare, neurogliaform, and ivy cells. In contrast, CGE-derived interneurons contain cholecystokinin, calretinin, vasoactive intestinal peptide, and reelin including non-fast-spiking basket, Schaffer collateral-associated, mossy fiber-associated, trilaminar, and additional neurogliaform cells. Our findings provide a basic blueprint of the developmental origins of hippocampal interneuron diversity.


Assuntos
Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo , Interneurônios/classificação , Interneurônios/metabolismo , Organizadores Embrionários , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia , Análise por Conglomerados , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Organizadores Embrionários/citologia , Organizadores Embrionários/embriologia , Organizadores Embrionários/crescimento & desenvolvimento , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Proteína Reelina , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
3.
Biophys J ; 94(11): 4299-306, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18310243

RESUMO

Picrotoxin (PTX) is a noncompetitive antagonist of many ligand-gated ion channels, with a site of action believed to be within the ion-conducting pore. In the A-type gamma-aminobutyric acid receptor, a threonine residue in the second transmembrane domain is of particular importance for the binding of, and ultimate inhibition by, PTX. To better understand the relationship between this residue and the PTX molecule, we mutated this threonine residue to serine, valine, and tyrosine to change the structural and biochemical characteristics at this location. The known subunit stoichiometry of the A-type gamma-aminobutyric acid receptor allowed us to create receptors with anywhere from zero to five mutations. With an increasing number of mutated subunits, each amino acid substitution revealed a unique pattern of changes in PTX sensitivity, ultimately encompassing sensitivity shifts over several orders of magnitude. The electrophysiological data on PTX-mediated block, and supporting modeling and docking studies, provide evidence that an interaction between the PTX molecule and three adjacent uncharged polar amino acids at this position of the pore are crucial for PTX-mediated inhibition.


Assuntos
Hidrogênio/química , Modelos Químicos , Picrotoxina/química , Receptores de GABA-A/química , Receptores de GABA-A/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação de Hidrogênio , Mutagênese Sítio-Dirigida , Porosidade , Ligação Proteica , Conformação Proteica , Receptores de GABA-A/metabolismo , Relação Estrutura-Atividade
4.
J Physiol ; 577(Pt 2): 569-77, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16990398

RESUMO

Picrotoxin, a potent antagonist of the inhibitory central nervous system GABAA and glycine receptors, is believed to interact with residues that line the central ion pore. These pore-lining residues are in the second transmembrane domain (TM2) of each of the five constituent subunits. One of these amino acids, a threonine at the 6' location, when mutated to phenylalanine, abolishes picrotoxin sensitivity. It has been suggested that this threonine, via hydrogen bonding, directly interacts with the picrotoxin molecule. We previously demonstrated that this mutation, in the alpha, beta or gamma subunit, can impart picrotoxin resistance to the GABA receptor. Since the functional pentameric GABA receptor contains two alpha subunits, two beta subunits and one gamma subunit, it is not clear how many alpha and beta subunits must carry this mutation to impart the resistant phenotype. In this study, by coexpression of mutant alpha or beta subunits with their wild-type counterparts in various defined ratios, we demonstrate that any single subunit carrying the 6' mutation imparts picrotoxin resistance. Implications of this finding in terms of the mechanism of antagonism are considered.


Assuntos
Antagonistas GABAérgicos/farmacologia , Mutação , Picrotoxina/farmacologia , Receptores de GABA-A/metabolismo , Animais , Relação Dose-Resposta a Droga , Antagonistas de Receptores de GABA-A , Potenciais da Membrana/efeitos dos fármacos , Microinjeções , Modelos Moleculares , Dinâmica não Linear , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Receptores de GABA-A/química , Receptores de GABA-A/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Xenopus laevis
5.
Neuroreport ; 15(12): 1969-73, 2004 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-15305147

RESUMO

Picrotoxin (PTX) is a convulsant that antagonizes many inhibitory ligand-gated receptors. The mechanism of PTX block is believed to involve residues which line the pore in the second transmembrane domain (M2). The alpha(3)beta(4) and alpha(7) nicotinic acetylcholine receptors (nAChRs) have high homology to inhibitory LGICs in this M2 region and therefore could also be susceptible to block by PTX. Here, we report that PTX is an effective inhibitor at these nicotinic receptors (rat), with IC50 values of 96.1 +/- 5.5 and 194.9 +/- 19.2 microM for the alpha(3)beta(4) and alpha(7), respectively. These results provide insights into the structure-function relation of PTX-mediated antagonism in this family of ligand-activated receptors. Furthermore they should also be considered when employing PTX to selectively eliminate GABA- or glycine-mediated events.


Assuntos
Antagonistas Colinérgicos/farmacologia , Fragmentos de Peptídeos/fisiologia , Picrotoxina/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Concentração Inibidora 50 , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Receptores Nicotínicos/fisiologia , Alinhamento de Sequência , Transfecção/métodos , Xenopus laevis
6.
Toxicol Lett ; 129(1-2): 47-53, 2002 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-11879973

RESUMO

Several convulsants and major insecticides block the gamma-aminobutyric acid (GABA)-gated chloride channel in brain on binding to the GABA(A) receptor. The GABA(C) receptor, important in retina and present in brain, is also coupled to a chloride channel and is therefore a potential target for toxicant action examined here in radioligand binding and electrophysiological experiments. Human homomeric rho 1 GABA(C) receptor expressed in human embryonic kidney cells (HEK293) undergoes specific and saturable high-affinity binding of 4-n-[3H]propyl-4' -ethynylbicycloorthobenzoate ([3H]EBOB) using a cyano analog (CNBOB) to determine non-specific binding. This GABA(C) rho 1 receptor is very sensitive to CNBOB and lindane relative to alpha-endosulfan, tert-butylbicyclophosphorothionate, picrotoxinin and fipronil (IC(50) values of 23, 91, 800, 1080, 4000 and >10000 nM, respectively, in displacing [3H]EBOB). A similar potency sequence (except for picrotoxinin) is observed for inhibition of GABA-induced currents of rho 1 receptor expressed in Xenopus oocytes. The present study does not consider rho 2 homomeric and rho 1 rho 2 heteromeric GABA(C) receptors which are known to be more sensitive than rho 1 to picrotoxinin. The inhibitor sensitivity and specificity of this rho 1 GABA(C) receptor differ greatly from those of human homomeric beta 3 and native GABA(A) receptors.


Assuntos
Inseticidas/toxicidade , Receptores de GABA/efeitos dos fármacos , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Canais de Cloreto/antagonistas & inibidores , Humanos , Potenciais da Membrana/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Sensibilidade e Especificidade , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...