Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(18): 6015-6023, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30965008

RESUMO

Material scientists are in need of experimental techniques that facilitate a quantitative mechanical characterization of mesoscale materials and, therefore, their rational design. An example is that of thin organic films, as their performance often relates to their ability to withstand use without damage. The mechanical characterization of thin films has benefited from the emergence of the atomic force microscope (AFM). In this regard, it is of relevance that most soft materials are not elastic but viscoelastic instead. While most AFM operation modes and analysis procedures are suitable for elasticity studies, the use of AFM for quantitative viscoelastic characterizations is still a challenge. This is now an emerging topic due to recent developments in contact resonance AFM. The aim of this work was to further explore the potential of this technique by investigating its sensitivity to viscoelastic changes induced by environmental parameters, specifically humidity. Here, we show that by means of this experimental approach, it was possible to quantitatively monitor the influence of humidity on the viscoelasticity of two different thin and hydrophobic polyurethane coatings representative of those typically used to protect materials from processes like weathering and wear. The technique was sensitive even to the transition between the antiplasticizing and plasticizing effects of ambient humidity. Moreover, we showed that this was possible without the need of externally exciting the AFM cantilever or the sample, i.e., just by monitoring the Brownian motion of cantilevers, which significantly facilitates the implementation of this technique in any AFM setup.

2.
Polymers (Basel) ; 10(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966319

RESUMO

Latex coatings are environmentally friendly i.e., they are formed from aqueous polymer dispersions, are cheap to produce and provide exceptional mechanical properties. Therefore, they are ubiquitous and can be found in a wide range of different applications such as paints and varnishes, pressure-sensitive adhesives, textiles, construction materials, paper coatings and inks. However, they also have weaknesses and their surfactant content is among them. Surfactants are often needed to stabilize polymer particles in the aqueous latex dispersions. These surfactants also form part of the coatings formed from these dispersions, and it is well-known that they can lower their performance. This work further explores this aspect and focuses on the role that embedded surfactant domains play in the response of latex coatings to humid environments. For this purpose, we made use of several experimental techniques where humidity control was implemented: quartz crystal microbalance with dissipation, atomic force microscopy and differential scanning calorimetry. By means of this multimethodological approach, we report that surfactants embedded in latex coatings can undergo humidity-induced transitions towards more hydrated and softer phases, and that this results in a drastic decrease of the mechanical and water barrier properties of the whole coatings. Subsequently, this work highlights the potential of taking into account the phase behavior of surfactants when choosing which ones to use in the synthesis of latex dispersions as this would help in predicting their performance under different environmental conditions.

3.
J Colloid Interface Sci ; 317(1): 83-95, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17949734

RESUMO

Film formation from latex dispersions with varying concentrations of sodium dodecylsulfate (SDS) and sodium persulfate (NaPS) was studied with a sorption balance. The drying rate decreased significantly at a critical volume fraction of polymer (phi pc). Under constant drying conditions the phi pc varied due to differences in particle stabilization. In SDS containing samples, the droplets wetted larger areas, the film thicknesses decreased and, consequently, the initial evaporation rate was decreased. The decrease in the initial evaporation rate first continued with increasing SDS concentration but leveled off at an apparent critical micelle concentration (CMC). Samples containing NaPS had different types of film formation mechanisms with large variations in phi pc and the total drying time, which could be explained by differences in the electrostatic stabilization. For dialyzed dispersions containing no NaPS, phi pc was close to 0.7. In samples with medium high NaPS concentration a skin was formed at the air interface causing an early shift in the evaporation rate, resulting in 0.25

4.
Langmuir ; 23(7): 3590-602, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17335252

RESUMO

Water-based copolymer dispersions were prepared using methyl methacrylate (MMA), ethyl acrylate (EA) (MMA/EA = 1:2), and a series of nonionic polymerizable surfactants, i.e., "surfmers" based on poly(ethylene glycol)-(meth)acrylates. The latexes were compared with the behavior of a conventionally stabilized (nonionic nonylphenol ethoxylate, NP100 with 84 ethylene oxide units) dispersion with the same MMA-EA composition (PMMAEA). A number of techniques were employed in order to characterize structure, dynamics, and film formation properties: solution/solid-state NMR, dynamic/static light scattering (DLS/SLS), differential scanning calorimetry (DSC), tensile/shear mode dynamic mechanical thermal analysis (DMTA), and atomic force microscopy (AFM). The surfmers were found to be miscible with the MMA-EA copolymer at room temperature, with 46-85 mol % of the reacted surfmer detected at the particle surfaces, and the remaining part buried in the particle bulk. In contrast, the NP100 surfactant formed a separate interphase between the copolymer particles with no mixing detected at room temperature or at 90 degrees C. For a 4.0% dry weight concentration, NP100 phase separated and further crystallized at room temperature over a period of several months. Composition fluctuations related to a limited blockiness on a length scale above approximately 2 nm were detected for PMMAEA particles, whereas the surfmer particles were found to be homogeneous also below this limit. On a particle-particle level, the dispersions tended to form colloidal crystals unless hindered by a broadened particle size distribution or, in the case of PMMAEA, by the action of NP100. Finally, a surface roughness (Rq) master plot was constructed for data above the glass transition temperature (Tg) from Tg + 11 degrees C to Tg + 57 degrees C and compared with the complex shear modulus over 11 frequency decades. Shift factors from the 2 methods obeyed the same Williams-Landel-Ferry (WLF) temperature dependence, thus connecting the long-time surface flattening process to the rheological behavior of the copolymer.


Assuntos
Microesferas , Polietilenoglicóis/química , Ácidos Polimetacrílicos/síntese química , Coloides/química , Ácidos Polimetacrílicos/química , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...