Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391912

RESUMO

Platelet function at vascular injury sites is tightly regulated through the actin cytoskeleton. The Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (WAVE)-regulatory complex (WRC) activates lamellipodia formation via ARP2/3, initiated by GTP-bound RAC1 interacting with the WRC subunit CYFIP1. The protein FAM49b (Family of Unknown Function 49b), also known as CYRI-B (CYFIP-Related RAC Interactor B), has been found to interact with activated RAC1, leading to the negative regulation of the WRC in mammalian cells. To investigate the role of FAM49b in platelet function, we studied platelet-specific Fam49b-/--, Cyfip1-/--, and Cyfip1/Fam49b-/--mice. Platelet counts and activation of Fam49b-/- mice were comparable to those of control mice. On fully fibrinogen-coated surfaces, Fam49b-/--platelets spread faster with an increased mean projected cell area than control platelets, whereas Cyfip1/Fam49b-/--platelets did not form lamellipodia, phenocopying the Cyfip1-/--platelets. However, Fam49b-/--platelets often assumed a polarized shape and were more prone to migrate on fibrinogen-coated surfaces. On 2D structured micropatterns, however, Fam49b-/--platelets displayed reduced spreading, whereas spreading of Cyfip1-/-- and Cyfip1/Fam49b-/--platelets was enhanced. In summary, FAM49b contributes to the regulation of morphology and migration of spread platelets, but to exert its inhibitory effect on actin polymerization, the functional WAVE complex must be present.


Assuntos
Proteínas de Transporte , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Plaquetas/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo , Mamíferos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Basic Res Cardiol ; 118(1): 47, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930434

RESUMO

Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.


Assuntos
Síndrome de Barth , Animais , Camundongos , Síndrome de Barth/genética , Cistina , Antioxidantes , Ácidos Graxos , Glutamatos , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...