Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(3): 354-367, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992761

RESUMO

Induction of programmed cell death (PCD) is a key cytotoxic effect of anticancer therapies. PCD is not confined to caspase-dependent apoptosis, but includes necroptosis, a regulated form of necrotic cell death controlled by receptor-interacting protein (RIP) kinases 1 and 3, and mixed lineage kinase domain-like (MLKL) pseudokinase. Necroptosis functions as a defense mechanism against oncogenic mutations and pathogens and can be induced by a variety of anticancer agents. However, the functional role and regulatory mechanisms of necroptosis in anticancer therapy are poorly understood. In this study, we found that RIP3-dependent but RIP1-independent necroptosis is engaged by 5-fluorouracil (5-FU) and other widely used antimetabolite drugs, and functions as a major mode of cell death in a subset of colorectal cancer cells that express RIP3. We identified a novel 5-FU-induced necroptosis pathway involving p53-mediated induction of the BH3-only Bcl-2 family protein, p53 upregulated modulator of apoptosis (PUMA), which promotes cytosolic release of mitochondrial DNA and stimulates its sensor z-DNA-binding protein 1 (ZBP1) to activate RIP3. PUMA/RIP3-dependent necroptosis mediates the in vitro and in vivo antitumor effects of 5-FU and promotes a robust antitumor immune response. Our findings provide a rationale for stimulating necroptosis to enhance tumor cell killing and antitumor immune response leading to improved colorectal cancer treatments.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Proteína Supressora de Tumor p53 , Necroptose , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Necrose/metabolismo , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
2.
Oncogene ; 42(12): 869-880, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36721000

RESUMO

Targeting cyclin-dependent kinases (CDKs) has recently emerged as a promising therapeutic approach against cancer. However, the anticancer mechanisms of different CDK inhibitors (CDKIs) are not well understood. Our recent study revealed that selective CDK4/6 inhibitors sensitize colorectal cancer (CRC) cells to therapy-induced apoptosis by inducing Death Receptor 5 (DR5) via the p53 family member p73. In this study, we investigated if this pathway is involved in anticancer effects of different CDKIs. We found that less-selective CDKIs, including flavopiridol, roscovitine, dinaciclib, and SNS-032, induced DR5 via p73-mediated transcriptional activation. The induction of DR5 by these CDKIs was mediated by dephosphorylation of p73 at Threonine 86 and p73 nuclear translocation. Knockdown of a common target of these CDKIs, including CDK1, 2, or 9, recapitulated p73-mediated DR5 induction. CDKIs strongly synergized with 5-fluorouracil (5-FU), the most commonly used CRC chemotherapy agent, in vitro and in vivo to promote growth suppression and apoptosis, which required DR5 and p73. Together, these findings indicate p73-mediated DR5 induction as a potential tumor suppressive mechanism and a critical target engaged by different CDKIs in potentiating therapy-induced apoptosis in CRC cells. These findings help better understand the anticancer mechanisms of CDKIs and may help facilitate their clinical development and applications in CRC.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico
3.
Front Oncol ; 12: 1018775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313707

RESUMO

Background: Colorectal cancer (CRC) frequently has a dysregulated epigenome causing aberrant up-regulation of oncogenes such as c-MYC. Bromodomain and extra-terminal domain (BET) proteins and histone acetyltransferases (HAT) are epigenetic regulatory proteins that create and maintain epigenetic states supporting oncogenesis. BET inhibitors and HAT inhibitors are currently being investigated as cancer therapeutics due to their ability to suppress cancer-promoting epigenetic modifiers. Due to the extensive molecular crosstalk between BET proteins and HAT proteins, we hypothesized that dual inhibition of BET and HAT could more potently inhibit CRC cells than inhibition of each individual protein. Methods: We investigated the activity and mechanisms of a dual BET and HAT inhibitor, NEO2734, in CRC cell lines and mouse xenografts. MTS, flow cytometry, and microscopy were used to assess cell viability. qPCR, Western blotting, and immunofluorescent staining were used to assess mechanisms of action. Results: We found that NEO2734 more potently suppresses CRC cell growth than first generation BET inhibitors, regardless of the status of common CRC driver mutations. We previously showed that BET inhibitors upregulate DR5 to induce extrinsic apoptosis. In the current study, we show that NEO2734 treatment induces CRC cell apoptosis via both the intrinsic and extrinsic apoptosis pathways. NEO2734 increases p53 expression and subsequently increased expression of the p53-upregulated mediator of apoptosis (PUMA), which is a critical mechanism for activating intrinsic apoptosis. We demonstrate that inhibition of either the intrinsic or extrinsic branches of apoptosis partially rescues CRC cells from NEO2734 treatment, while the dual inhibition of both branches of apoptosis more strongly rescues CRC cells from NEO2734 treatment. Finally, we show that NEO2734 monotherapy is able to suppress tumor growth in CRC xenografts by inducing apoptosis. Conclusions: Our study demonstrates NEO2734 potently suppresses CRC cells in vitro and in vivo by simultaneously upregulating PUMA and DR5 to induce cell death. Further studies of NEO2734 for treating CRC are warranted.

4.
Genes Dis ; 9(6): 1579-1593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36157481

RESUMO

The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.

5.
Cancer Res ; 82(7): 1340-1352, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149588

RESUMO

Targeting cyclin-dependent kinases 4 and 6 (CDK4/6) is a successful therapeutic approach against breast and other solid tumors. Inhibition of CDK4/6 halts cell cycle progression and promotes antitumor immunity. However, the mechanisms underlying the antitumor activity of CDK4/6 inhibitors are not fully understood. We found that CDK4/6 bind and phosphorylate the p53 family member p73 at threonine 86, which sequesters p73 in the cytoplasm. Inhibition of CDK4/6 led to dephosphorylation and nuclear translocation of p73, which transcriptionally activated death receptor 5 (DR5), a cytokine receptor and key component of the extrinsic apoptotic pathway. p73-mediated induction of DR5 by CDK4/6 inhibitors promoted immunogenic cell death of cancer cells. Deletion of DR5 in cancer cells in vitro and in vivo abrogated the potentiating effects of CDK4/6 inhibitors on immune cytokine TRAIL, 5-fluorouracil chemotherapy, and anti-PD-1 immunotherapy. Together, these results reveal a previously unrecognized consequence of CDK4/6 inhibition, which may be critical for potentiating the killing and immunogenic effects on cancer cells. SIGNIFICANCE: This work demonstrates how inhibition of CDK4/6 sensitizes cancer cells to chemotherapy and immune checkpoint blockade and may provide a new molecular marker for improving CDK4/6-targeted cancer therapies. See related commentary by Frank, p. 1170.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Inibidores de Checkpoint Imunológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Proteína Tumoral p73 , Apoptose , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fluoruracila/farmacologia , Humanos , Fosforilação , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteína Tumoral p73/metabolismo
6.
Oncogene ; 40(48): 6566-6578, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615996

RESUMO

Bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers that play a critical role in oncogenesis by controlling the expression of oncogenes such as c-Myc. Targeting BET family proteins has recently emerged as a promising anticancer strategy. However, the molecular mechanisms by which cancer cells respond to BET inhibition are not well understood. In this study, we found that inducing the degradation of BET proteins by the proteolysis targeting chimeras (PROTAC) approach potently suppressed the growth of colorectal cancer (CRC) including patient-derived tumors. Mechanistically, BET degradation transcriptionally activates Death Receptor 5 (DR5) to trigger immunogenic cell death (ICD) in CRC cells. Enhanced DR5 induction further sensitizes CRC cells with a mutation in Speckle-type POZ protein (SPOP). Furthermore, DR5 is indispensable for a striking antitumor effect of combining BET degradation and anti-PD-1 antibody, which was well tolerated in mice and almost eradicated syngeneic tumors. Our results demonstrate that BET degradation triggers DR5-mediated ICD to potently suppress CRC and potentiate immune checkpoint blockade. These results provide a rationale, mechanistic insights, and potential biomarkers for developing a precision CRC therapy by inducing BET protein degradation.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Morte Celular Imunogênica , Proteínas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas/genética , Proteólise , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...