Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 68(1): 89-102, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29152775

RESUMO

Surgery and cisplatin-based treatment of hepatoblastoma (HB) currently guarantee the survival of 70%-80% of patients. However, some important challenges remain in diagnosing high-risk tumors and identifying relevant targetable pathways offering new therapeutic avenues. Previously, two molecular subclasses of HB tumors have been described, C1 and C2, with C2 being the subgroup with the poorest prognosis, a more advanced tumor stage, and the worst overall survival rate. An associated 16-gene signature to discriminate the two tumoral subgroups was proposed, but it has not been transferred into clinical routine. To address these issues, we performed RNA sequencing of 25 tumors and matched normal liver samples from patients. The transcript profiling separated HB into three distinct subgroups named C1, C2A, and C2B, identifiable by a concise four-gene signature: hydroxysteroid 17-beta dehydrogenase 6, integrin alpha 6, topoisomerase 2-alpha, and vimentin, with topoisomerase 2-alpha being characteristic for the proliferative C2A tumors. Differential expression of these genes was confirmed by quantitative RT-PCR on an expanded cohort and by immunohistochemistry. We also revealed significant overexpression of genes involved in the Fanconi anemia (FA) pathway in the C2A subgroup. We then investigated the ability of several described FA inhibitors to block growth of HB cells in vitro and in vivo. We demonstrated that bortezomib, a Food and Drug Administration-approved proteasome inhibitor, strongly impairs the proliferation and survival of HB cell lines in vitro, blocks FA pathway-associated double-strand DNA repair, and significantly impedes HB growth in vivo. CONCLUSION: The highly proliferating C2A subtype is characterized by topoisomerase 2-alpha gene up-regulation and FA pathway activation, and the HB therapeutic arsenal could include bortezomib for the treatment of patients with the most aggressive tumors. (Hepatology 2018;68:89-102).


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Hepatoblastoma/classificação , Hepatoblastoma/genética , Neoplasias Hepáticas/classificação , Neoplasias Hepáticas/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Reparo do DNA/efeitos dos fármacos , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Perfilação da Expressão Gênica , Células Hep G2 , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/enzimologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/enzimologia , Análise de Sequência de RNA
2.
Stem Cell Res ; 23: 178-181, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28925365

RESUMO

Heterozygous activating mutation (p.Glu227Lys) in KCNJ11 leads to maturity-onset diabetes of the young (MODY) type 13, that is a subtype of dominant inherited young-onset non-autoimmune diabetes due to a primary defect in pancreatic beta cells. We generated induced pluripotent stem cells (iPSCs) from a patient with KCNJ11p.Glu227Lys mutation who developed MODY at 13years old. KCNJ11p.Glu227Lys-mutated cells that were reprogrammed by non-integrative viral transduction had normal karyotype, harboured the KCNJ11p.Glu227Lys mutation, expressed pluripotency hallmarks and had the differentiation capacity into the three germ layers.


Assuntos
Técnicas de Cultura de Células/métodos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Animais , Sequência de Bases , Forma Celular , Humanos , Masculino , Camundongos , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Fenótipo
3.
Hepatol Commun ; 1(2): 168-183, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-29404451

RESUMO

Hepatoblastoma (HBL) is the most common pediatric liver cancer. In this malignant neoplasm, beta-catenin protein accumulates and increases Wnt signaling due to recurrent activating mutations in the catenin-beta 1 (CTNNB1) gene. Therefore, beta-catenin is a key therapeutic target in HBL. However, controlling beta-catenin production with therapeutic molecules has been challenging. New biological studies could provide alternative therapeutic solutions for the treatment of HBL, especially for advanced tumors and metastatic disease. In this study, we identified microRNAs (miRNAs) that target beta-catenin and block HBL cell proliferation in vitro and tumor growth in vivo. Using our dual-fluorescence-FunREG system, we screened a library of 1,712 miRNA mimics and selected candidates inhibiting CTNNB1 expression through interaction with its untranslated regions. After validating the regulatory effect of nine miRNAs on beta-catenin in HBL cells, we measured their expression in patient samples. Let-7i-3p, miR-449b-3p, miR-624-5p, and miR-885-5p were decreased in tumors compared to normal livers. Moreover, they inhibited HBL cell growth and Wnt signaling activity in vitro partly through beta-catenin down-regulation. Additionally, miR-624-5p induced cell senescence in vitro, blocked experimental HBL growth in vivo, and directly targeted the beta-catenin 3'-untranslated region. Conclusion: Our results shed light on how beta-catenin-regulating miRNAs control HBL progression through Wnt signaling inactivation. In particular, miR-624-5p may constitute a promising candidate for miRNA replacement therapy for HBL patients. (Hepatology Communications 2017;1:168-183).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...