Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
J Cell Biol ; 210(7): 1213-24, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416967

RESUMO

Ca(2+)-dependent mechanisms are critical for successful completion of fertilization. Here, we demonstrate that CRISP1, a sperm protein involved in mammalian fertilization, is also present in the female gamete and capable of modulating key sperm Ca(2+) channels. Specifically, we show that CRISP1 is expressed by the cumulus cells that surround the egg and that fertilization of cumulus-oocyte complexes from CRISP1 knockout females is impaired because of a failure of sperm to penetrate the cumulus. We provide evidence that CRISP1 stimulates sperm orientation by modulating sperm hyperactivation, a vigorous motility required for penetration of the egg vestments. Moreover, patch clamping of sperm revealed that CRISP1 has the ability to regulate CatSper, the principal sperm Ca(2+) channel involved in hyperactivation and essential for fertility. Given the critical role of Ca(2+) for sperm motility, we propose a novel CRISP1-mediated fine-tuning mechanism to regulate sperm hyperactivation and orientation for successful penetration of the cumulus during fertilization.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Glicoproteínas de Membrana/metabolismo , Oócitos/metabolismo , Motilidade dos Espermatozoides/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Oócitos/citologia , Espermatozoides/citologia
2.
PLoS One ; 8(8): e71995, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951277

RESUMO

Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca(2+) concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca(2+) spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca(2+) release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca(2+) ionophore, suggesting that the Ca(2+) source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca(2+) rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis.


Assuntos
Membrana Celular/metabolismo , Fertilização/fisiologia , Óvulo/fisiologia , Fosfatidilserinas/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Anexina A5/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Membrana Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Fluoresceína-5-Isotiocianato/metabolismo , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Óvulo/citologia , Óvulo/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatozoides/citologia , Espermatozoides/fisiologia , Zigoto/metabolismo
3.
J Androl ; 33(6): 1360-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22653965

RESUMO

Cysteine-rich secretory protein 2 (CRISP2) is a testicular sperm protein proposed to be involved in fertilization. With the aim of examining the relevance of CRISP2 for fertility and its potential use as a target for contraception, in the present work, male and female rats were immunized with recombinant CRISP2 coupled to maltose-binding protein (MBP) and evaluated for their subsequent fertility. As controls, animals were injected with either MBP or recombinant CRISP1. Enzyme-linked immunosorbent assay of sera collected at different intervals after immunization indicated that CRISP2 immunization raised specific antibodies in both sexes, with levels that increased as a function of time. Western blot studies revealed that anti-CRISP2 sera were capable of recognizing CRISP2 in testicular, epididymal, and sperm extracts, whereas histological studies showed no evidence of autoimmune orchitis or epididymitis. Indirect immunofluorescence experiments revealed the ability of anti-CRISP2 sera to recognize the native sperm protein in fresh, capacitated, and ionophore-induced acrosome-reacted cells. Moreover, anti-CRISP2 sera significantly inhibited the sperm ability to penetrate zona-free eggs, confirming the role of CRISP2 in rat gamete fusion. In spite of the presence of circulating anti-CRISP2 antibodies capable of inhibiting the sperm fertilizing ability, mating studies revealed no effects of CRISP2 immunization on male or female fertility, in contrast to the significant inhibition observed in both sexes in animals injected with CRISP1. Together, these observations indicated the immunogenic properties of testicular CRISP2 but do not support CRISP2 as a target for immunocontraception or as a molecule responsible for generating autoimmune orchitis or immunoinfertility.


Assuntos
Fertilização/fisiologia , Glicoproteínas/imunologia , Animais , Moléculas de Adesão Celular , Anticoncepção Imunológica , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Recombinantes/imunologia , Capacitação Espermática
4.
Biol Reprod ; 85(3): 503-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21593480

RESUMO

Rat epididymal protein CRISP1 (cysteine-rich secretory protein 1) associates with sperm during maturation and participates in fertilization. Evidence indicates the existence of two populations of CRISP1 in sperm: one loosely bound and released during capacitation, and one strongly bound that remains after this process. However, the mechanisms underlying CRISP1 binding to sperm remain mostly unknown. Considering the high concentrations of Zn(2+) present in the epididymis, we investigated the potential involvement of this cation in the association of CRISP1 with sperm. Caput sperm were coincubated with epididymal fluid in the presence or absence of Zn(2+), and binding of CRISP1 to sperm was examined by Western blot analysis. An increase in CRISP1 was detected in sperm exposed to Zn(2+), but not if the cation was added with ethylenediaminetetra-acetic acid (EDTA). The same results were obtained using purified CRISP1. Association of CRISP1 with sperm was dependent on epididymal fluid and Zn(2+) concentrations and incubation time. Treatment with NaCl (0.6 M) removed the in vitro-bound CRISP1, indicating that it corresponds to the loosely bound population. Flow cytometry of caput sperm exposed to biotinylated CRISP1/avidin-fluorescein isothiocyanate revealed that only the cells incubated with Zn(2+) exhibited an increase in fluorescence. When these sperm were examined by epifluorescence microscopy, a clear staining in the tail, accompanied by a weaker labeling in the head, was observed. Detection of changes in the tryptophan fluorescence emission spectra of CRISP1 when exposed to Zn(2+) supported a direct interaction between CRISP1 and Zn(2+). Incubation of either cauda epididymal fluid or purified CRISP1 with Zn(2+), followed by native-PAGE and Western blot analysis, revealed the presence of high-molecular-weight CRISP1 complexes not detected in fluids treated with EDTA. Altogether, these results support the involvement of CRISP1-Zn(2+) complexes in the association of the loosely bound population of CRISP1 with sperm during epididymal maturation.


Assuntos
Epididimo/metabolismo , Glicoproteínas de Membrana/metabolismo , Espermatozoides/metabolismo , Zinco/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
J Androl ; 32(6): 672-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21441424

RESUMO

Rat epididymal CRISP1, the first described member of the evolutionarily conserved Cysteine-RIch Secretory Protein (CRISP) family, is expressed in the proximal regions of the epididymis and associates with the sperm during epididymal transit. Evidence indicates the existence of 2 populations of CRISP1 in spermatozoa: a major one, loosely bound, which is released during capacitation and, therefore, proposed as a decapacitating factor; and a minor one, strongly associated with spermatozoa that remains on the cells after capacitation and is proposed to participate in gamete interaction. Originally localized to the dorsal region of capacitated sperm, CRISP1 migrates to the equatorial segment with capacitation and acrosome reaction. Consistent with these localizations, in vitro fertilization experiments support the involvement of CRISP1 in the first step of sperm-zona pellucida (ZP) interaction and subsequent gamete fusion through its interaction with egg-complementary sites. The potential roles of CRISP1 in capacitation and fertilization have been further supported by the finding that capacitated spermatozoa from CRISP1 "knockout" animals exhibit low levels of protein tyrosine phosphorylation and have an impaired ability to fertilize zona-intact and zona-free eggs in vitro. Moreover, recent evidence from mutant spermatozoa reveals that CRISP1 mediates the stage of sperm binding to the ZP. Altogether, these observations support the view that CRISP1 is a multifunctional protein playing different roles during fertilization through its different associations with and localizations on spermatozoa. We believe these results contribute to a better understanding of the molecular mechanisms involved in both the fertilization process and the acquisition of sperm-fertilizing ability that occurs during epididymal maturation.


Assuntos
Epididimo/metabolismo , Fertilização , Glicoproteínas de Membrana/metabolismo , Animais , Humanos , Masculino , Camundongos , Ratos , Capacitação Espermática , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo
6.
Biol Res ; 44(2): 135-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22513415

RESUMO

Epididymal protein CRISPI is a member of the CRISP (Cysteine-RIch Secretory proteins) family and is involved in sperm-egg fusion through its interaction with complementary sites on the egg surface. Results from our laboratory have shown that this binding ability resides in a 12-amino-acid region corresponding to a highly conserved motif of the CRISP family, named Signature 2 (S2). In addition to this, our results revealed that CRISP1 could also be involved in the previous step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. As another approach to elucidate the participation of CRISP1 in fertilization, a mouse line containing a targeted disruption of CRISP1 was generated. Although CRISP1-deficient mice exhibited normal fertility, CRISP1-defficient sperm presented a decreased level of protein tyrosine phosphorylation during capacitation, and an impaired ability to fertilize both zona-intact and zona-free eggs in vitro, confirming the proposed roles for the protein in fertilization. Evidence obtained in our laboratory indicated that testicular CRISP2 would also be involved in sperm-egg fusion. Competition assays between CRISP1 and CRISP2, as well as the comparison of their corresponding S2 regions, suggest that both proteins bind to common complementary sites in the egg. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization.


Assuntos
Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Zona Pelúcida/metabolismo , Animais , Moléculas de Adesão Celular , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos
7.
Biol. Res ; 44(2): 135-138, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-602968

RESUMO

Epididymal protein CRISPI is a member of the CRISP (Cysteine-RIch Secretory proteins) family and is involved in sperm-egg fusion through its interaction with complementary sites on the egg surface. Results from our laboratory have shown that this binding ability resides in a 12-amino-acid region corresponding to a highly conserved motif of the CRISP family, named Signature 2 (S2). In addition to this, our results revealed that CRISP1 could also be involved in the previous step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. As another approach to elucidate the participation of CRISP1 in fertilization, a mouse line containing a targeted disruption of CRISP1 was generated. Although CRISP1-deficient mice exhibited normal fertility, CRISP1-defficient sperm presented a decreased level of protein tyrosine phosphorylation during capacitation, and an impaired ability to fertilize both zona-intact and zona-free eggs in vitro, confirming the proposed roles for the protein in fertilization. Evidence obtained in our laboratory indicated that testicular CRISP2 would also be involved in sperm-egg fusion. Competition assays between CRISP1 and CRISP2, as well as the comparison of their corresponding S2 regions, suggest that both proteins bind to common complementary sites in the egg. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization.


Assuntos
Animais , Feminino , Humanos , Masculino , Camundongos , Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Zona Pelúcida/metabolismo
8.
Fertil Steril ; 93(8): 2551-6, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20226442

RESUMO

OBJECTIVE: To evaluate the immunologic behavior of human cysteine-rich secretory protein 1 (hCRISP1), a human sperm epididymal protein involved in fertilization, to establish its immunocontraceptive potential. DESIGN: In vivo study in a nonhuman primate model. SETTING: Animal care facility of an academic research center. ANIMAL(S): Adult (6- to 15-year-old) male and female cynomolgus macaques (Macaca fascicularis) distributed into three groups. INTERVENTION(S): Animals received four injections (intramuscularly) of recombinant hCRISP1, recombinant monkey CRISP1 (mkCRISP1), or maltose-binding protein (MBP). Blood and semen samples were obtained before and after immunization. MAIN OUTCOME MEASURE(S): Anti-hCRISP1 and anti-mkCRISP1 levels in sera and seminal plasma were evaluated by enzyme-linked immunosorbent assay (ELISA). The specificity of the immune response was evaluated by Western blot and binding of the antibodies to sperm by immunofluorescence. RESULT(S): Both hCRISP1 and mkCRISP1 raised an immune response that increased as a function of time and specifically recognized mkCRISP1 in sperm extracts. Sperm number, motility, and morphology were not affected by immunization. The presence of both specific antibodies in seminal plasma and a fluorescent labeling in sperm exposed only to second antibody indicated the ability of the anti-hCRISP1 antibodies both to enter into the male reproductive tract and to bind to the cells in vivo. CONCLUSION(S): These results support the potential involvement of anti-hCRISP1 antibodies in human immunoinfertility and hCRISP1 as a likely candidate for immunocontraception.


Assuntos
Macaca fascicularis/imunologia , Glicoproteínas de Membrana/imunologia , Animais , Anticoncepção Imunológica/métodos , Feminino , Humanos , Masculino , Espermatozoides/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...