Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Artif Intell ; 5(3): e220160, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37293347

RESUMO

Purpose: To develop, train, and validate a multiview deep convolutional neural network (DeePSC) for the automated diagnosis of primary sclerosing cholangitis (PSC) on two-dimensional MR cholangiopancreatography (MRCP) images. Materials and Methods: This retrospective study included two-dimensional MRCP datasets of 342 patients (45 years ± 14 [SD]; 207 male patients) with confirmed diagnosis of PSC and 264 controls (51 years ± 16; 150 male patients). MRCP images were separated into 3-T (n = 361) and 1.5-T (n = 398) datasets, of which 39 samples each were randomly chosen as unseen test sets. Additionally, 37 MRCP images obtained with a 3-T MRI scanner from a different manufacturer were included for external testing. A multiview convolutional neural network was developed, specialized in simultaneously processing the seven images taken at different rotational angles per MRCP examination. The final model, DeePSC, derived its classification per patient from the instance expressing the highest confidence in an ensemble of 20 individually trained multiview convolutional neural networks. Predictive performance on both test sets was compared with that of four licensed radiologists using the Welch t test. Results: DeePSC achieved an accuracy of 80.5% ± 1.3 (sensitivity, 80.0% ± 1.9; specificity, 81.1% ± 2.7) on the 3-T and 82.6% ± 3.0 (sensitivity, 83.6% ± 1.8; specificity, 80.0% ± 8.9) on the 1.5-T test set and scored even higher on the external test set (accuracy, 92.4% ± 1.1; sensitivity, 100.0% ± 0.0; specificity, 83.5% ± 2.4). DeePSC outperformed radiologists in average prediction accuracy by 5.5 (P = .34, 3 T) and 10.1 (P = .13, 1.5 T) percentage points. Conclusion: Automated classification of PSC-compatible findings based on two-dimensional MRCP was achievable and demonstrated high accuracy on internal and external test sets.Keywords: Neural Networks, Deep Learning, Liver Disease, MRI, Primary Sclerosing Cholangitis, MR Cholangiopancreatography Supplemental material is available for this article. © RSNA, 2023.

2.
Dentomaxillofac Radiol ; 51(7): 20210437, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532946

RESUMO

Computer-assisted surgery (CAS) allows clinicians to personalize treatments and surgical interventions and has therefore become an increasingly popular treatment modality in maxillofacial surgery. The current maxillofacial CAS consists of three main steps: (1) CT image reconstruction, (2) bone segmentation, and (3) surgical planning. However, each of these three steps can introduce errors that can heavily affect the treatment outcome. As a consequence, tedious and time-consuming manual post-processing is often necessary to ensure that each step is performed adequately. One way to overcome this issue is by developing and implementing neural networks (NNs) within the maxillofacial CAS workflow. These learning algorithms can be trained to perform specific tasks without the need for explicitly defined rules. In recent years, an extremely large number of novel NN approaches have been proposed for a wide variety of applications, which makes it a difficult task to keep up with all relevant developments. This study therefore aimed to summarize and review all relevant NN approaches applied for CT image reconstruction, bone segmentation, and surgical planning. After full text screening, 76 publications were identified: 32 focusing on CT image reconstruction, 33 focusing on bone segmentation and 11 focusing on surgical planning. Generally, convolutional NNs were most widely used in the identified studies, although the multilayer perceptron was most commonly applied in surgical planning tasks. Moreover, the drawbacks of current approaches and promising research avenues are discussed.


Assuntos
Aprendizado Profundo , Cirurgia Bucal , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
3.
Front Oncol ; 10: 1668, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984042

RESUMO

Radiotherapy is an essential part of multi-modal cancer therapy. Nevertheless, for certain cancer entities such as colorectal cancer (CRC) the indications of radiotherapy are limited due to anatomical peculiarities and high radiosensitivity of the surrounding normal tissue. The development of molecularly targeted, combined modality approaches may help to overcome these limitations. Preferably, such strategies should not only enhance radiation-induced tumor cell killing and the abrogation of tumor cell clonogenicity, but should also support the stimulation of anti-tumor immune mechanisms - a phenomenon which moved into the center of interest of preclinical and clinical research in radiation oncology within the last decade. The present study focuses on inhibition of heat shock protein 90 (HSP90) whose combination with radiotherapy has previously been reported to exhibit convincing therapeutic synergism in different preclinical cancer models. By employing in vitro and in vivo analyses, we examined if this therapeutic synergism also applies to the priming of anti-tumor immune mechanisms in model systems of CRC. Our results indicate that the combination of HSP90 inhibitor treatment and ionizing irradiation induced apoptosis in colorectal cancer cells with accelerated transit into secondary necrosis in a hyperactive Kras-dependent manner. During secondary necrosis, dying cancer cells released different classes of damage-associated molecular patterns (DAMPs) that stimulated migration and recruitment of monocytic cells in vitro and in vivo. Additionally, these dying cancer cell-derived DAMPs enforced the differentiation of a monocyte-derived antigen presenting cell (APC) phenotype which potently triggered the priming of allogeneic T cell responses in vitro. In summary, HSP90 inhibition - apart from its radiosensitizing potential - obviously enables and supports the initial steps of anti-tumor immune priming upon radiotherapy and thus represents a promising partner for combined modality approaches. The therapeutic performance of such strategies requires further in-depth analyses, especially for but not only limited to CRC.

4.
Cancer Res ; 79(22): 5758-5768, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585940

RESUMO

Angiogenesis is a hallmark of cancer that promotes tumor progression and metastasis. However, antiangiogenic agents have limited efficacy in cancer therapy due to the development of resistance. In clear cell renal cell carcinoma (ccRCC), AXL expression is associated with antiangiogenic resistance and poor survival. Here, we establish a role for GAS6/AXL signaling in promoting the angiogenic potential of ccRCC cells through the regulation of the plasminogen receptor S100A10. Genetic and therapeutic inhibition of AXL signaling in ccRCC tumor xenografts reduced tumor vessel density and growth under the renal capsule. GAS6/AXL signaling activated the expression of S100A10 through SRC to promote plasmin production, endothelial cell invasion, and angiogenesis. Importantly, treatment with the small molecule AXL inhibitor cabozantinib or an ultra-high affinity soluble AXL Fc fusion decoy receptor (sAXL) reduced the growth of a pazopanib-resistant ccRCC patient-derived xenograft. Moreover, the combination of sAXL synergized with pazopanib and axitinib to reduce ccRCC patient-derived xenograft growth and vessel density. These findings highlight a role for AXL/S100A10 signaling in mediating the angiogenic potential of ccRCC cells and support the combination of AXL inhibitors with antiangiogenic agents for advanced ccRCC. SIGNIFICANCE: These findings show that angiogenesis in renal cell carcinoma (RCC) is regulated through AXL/S100A10 signaling and support the combination of AXL inhibitors with antiangiogenic agents for the treatment of RCC.


Assuntos
Anexina A2/metabolismo , Carcinoma de Células Renais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Renais/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas S100/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/patologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/patologia , Transdução de Sinais/fisiologia , Receptor Tirosina Quinase Axl
5.
Acta Neuropathol Commun ; 7(1): 15, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30722785

RESUMO

Local cerebral hypoperfusion causes ischemic stroke while driving multiple cell-specific responses including inflammation, glutamate-induced neurotoxicity mediated via NMDAR, edema formation and angiogenesis. Despite the relevance of these pathophysiological mechanisms for disease progression and outcome, molecular determinants controlling the onset of these processes are only partially understood. In this context, our study intended to investigate the functional role of EphB2, a receptor tyrosine kinase that is crucial for synapse function and binds to membrane-associated ephrin-B ligands.Cerebral ischemia was induced in Ephb2-/- mice by transient middle cerebral artery occlusion followed by different times (6, 12, 24 and 48 h) of reperfusion. Histological, neurofunctional and transcriptome analyses indicated an increase in EphB2 phosphorylation under these conditions and attenuated progression of stroke in Ephb2-/- mice. Moreover, while infiltration of microglia/macrophages and astrocytes into the peri-infarct region was not altered, expression of the pro-inflammatory mediators MCP-1 and IL-6 was decreased in these mice. In vitro analyses indicated that binding of EphB2 to astrocytic ephrin-B ligands stimulates NF-κB-mediated cytokine expression via the MAPK pathway. Further magnetic resonance imaging of the Ephb2-/- ischemic brain revealed a lower level of cytotoxic edema formation within 6 h upon onset of reperfusion. On the mechanistic level, absence of neuronal EphB2 decreased the mitochondrial Ca2+ load upon specific activation of NMDAR but not during synaptic activity. Furthermore, neuron-specific loss of ephrin-B2 reduced the extent of cerebral tissue damage in the acute phase of ischemic stroke.Collectively, EphB2 may promote the immediate response to an ischemia-reperfusion event in the central nervous system by (i) pro-inflammatory activation of astrocytes via ephrin-B-dependent signaling and (ii) amplification of NMDA-evoked neuronal excitotoxicity.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Encefalite/metabolismo , Neurônios/metabolismo , Receptor EphB2/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Encefalite/complicações , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Neurônios/patologia , Receptor EphB2/genética , Transdução de Sinais , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
6.
Oncoimmunology ; 8(1): e1523097, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30546963

RESUMO

The major goal of radiotherapy is the induction of tumor cell death. Additionally, radiotherapy can function as in situ cancer vaccination by exposing tumor antigens and providing adjuvants for anti-tumor immune priming. In this regard, the mode of tumor cell death and the repertoire of released damage-associated molecular patterns (DAMPs) are crucial. However, optimal dosing and fractionation of radiotherapy remain controversial. Here, we examined the initial steps of anti-tumor immune priming by different radiation regimens (20 Gy, 4 × 2 Gy, 2 Gy, 0 Gy) with cell lines of triple-negative breast cancer in vitro and in vivo. Previously, we have shown that especially high single doses (20 Gy) induce a delayed type of primary necrosis with characteristics of mitotic catastrophe and plasma membrane disintegration. Now, we provide evidence that protein DAMPs released by these dying cells stimulate sequential recruitment of neutrophils and monocytes in vivo. Key players in this regard appear to be endothelial cells revealing a distinct state of activation upon exposure to supernatants of irradiated tumor cells as characterized by high surface expression of adhesion molecules and production of a discrete cytokine/chemokine pattern. Furthermore, irradiated tumor cell-derived protein DAMPs enforced differentiation and maturation of dendritic cells as hallmarked by upregulation of co-stimulatory molecules and improved T cell-priming. Consistently, a recurring pattern was observed: The strongest effects were detected with 20 Gy-irradiated cells. Obviously, the initial steps of radiotherapy-induced anti-tumor immune priming are preferentially triggered by high single doses - at least in models of triple-negative breast cancer.

7.
Stroke ; 49(6): 1479-1487, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760276

RESUMO

BACKGROUND AND PURPOSE: Detection and localization of the early phase of blood-brain barrier disruption (BBBD) in vivo during cerebral ischemia/reperfusion injury remain a major challenge but may be a relevant outcome parameter in stroke. METHODS: We studied early BBBD in mice after transient middle cerebral artery occlusion by multimodal, high-field (9.4T) in vivo magnetic resonance imaging, including the contrast agent gadofluorineM as an albumin-binding tracer. GadofluorineM contrast-enhanced magnetic resonance imaging was performed to determine BBBD at 2, 6, and 24 hours after reperfusion. BBBD was confirmed and localized along the microvascular tree by using fluorescent gadofluorineM and immunofluorescence stainings (cluster of differentiation 31, ephrin type-B receptor 4, alpha smooth muscle actin, ionized calcium binding adaptor molecule 1). RESULTS: GadofluorineM contrast-enhanced magnetic resonance imaging revealed a multifocal spatial distribution of early BBBD and its close association with the microvasculature at a resolution of 40 µm. GadofluorineM leakage was closely associated with ephrin type-B receptor 4-positive but not alpha smooth muscle actin-positive vessels. The multifocal pattern of early BBBD (already at 2 hours after reperfusion) thus occurred in the distal capillary and venular microvascular bed. These multifocal zones showed distinct imaging signs indicative of early vasogenic edema. The total volume of multifocal early BBBD accurately predicted infarct size at 24 hours after reperfusion. CONCLUSIONS: Early BBBD in focal cerebral ischemia initiates multifocally in the distal capillary and venular bed of the cerebral microvasculature. It is closely associated with perimicrovascular vasogenic edema and microglial activation and predicts the extent of final infarction.


Assuntos
Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Capilares/patologia , Acidente Vascular Cerebral/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Edema Encefálico/patologia , Circulação Cerebrovascular/fisiologia , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
8.
Hepatology ; 68(5): 1817-1832, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29790588

RESUMO

The identification of viability-associated long noncoding RNAs (lncRNAs) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied an RNA interference screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected cancer susceptibility 9 (CASC9) due to the strength of its phenotype, expression, and up-regulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by clustered regularly interspaced short palindromic repeats interference and single small interfering RNA (siRNA)-mediated and siRNA pool-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and a decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification and validated it by native RNA immunoprecipitation. Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (stable isotope labeling with amino acids in cell culture) of CASC9-depleted and HNRNPL-depleted cells revealed a set of coregulated genes which implied a role of the CASC9:HNRNPL complex in AKT signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured decreased tumor size after knockdown of CASC9. Conclusion: Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC; we identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT signaling and DNA damage sensing in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Galinhas , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno , Transdução de Sinais
9.
J Cereb Blood Flow Metab ; 37(1): 291-306, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26746864

RESUMO

Hypoxia-inducible factors mediate adaptive responses to ischemia, among others, by induction of anti- and pro-survival genes. Thus, the impact of HIF on neuronal survival upon stroke is controversial. Therefore, neuron-specific knockout mice deficient for Hif1a and Hif2a were exposed to inspiratory hypoxia or ischemia-reperfusion injury. Both Hif1a- and Hif2a-deficient mice showed no altered infarct and edema size, suggesting that both HIF-α subunits might compensate for each other. Accordingly, hypoxic HIF-target gene regulation was marginally affected with exception of anti-survival Bnip3 and pro-survival erythropoietin. In the early acute stage upon stroke, Hif1a/Hif2a double knockout mice exhibited significantly reduced expression of the anti-survival Bnip3, Bnip3L, and Pmaip1 Accordingly, global cell death and edema were significantly reduced upon 24 h but not 72 h reperfusion. Behavioral assessment indicated that Hif1a/Hif2a-deficient mice initially performed better, but became significantly more impaired after 72 h accompanied by increased apoptosis and reduced angiogenesis. Our findings suggest that in neurons HIF-1 and HIF-2 have redundant functions for cellular survival under ischemic conditions. By contrast, lack of anti-survival factors in Hif1a/Hif2a-deficient mice might protect from early acute neuronal cell death and neurological impairment, indicating a benefit of HIF-pathway inhibition in neurons in the very acute phase after ischemic stroke.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Isquemia Encefálica/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Neurônios/metabolismo , Acidente Vascular Cerebral/patologia , Doença Aguda , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sobrevivência Celular , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Camundongos , Camundongos Knockout , Neurônios/citologia , Córtex Sensório-Motor/fisiologia , Fatores de Tempo
10.
Oncotarget ; 7(28): 43199-43219, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27259245

RESUMO

The chaperone heat shock protein 90 (HSP90) crucially supports the maturation, folding, and stability of a variety of client proteins which are of pivotal importance for the survival and proliferation of cancer cells. Consequently, targeting of HSP90 has emerged as an attractive strategy of anti-cancer therapy, and it appears to be particularly effective in the context of molecular sensitization towards radiotherapy as has been proven in preclinical models of different cancer entities. However, so far the clinical translation has largely been hampered by suboptimal pharmacological properties and serious hepatotoxicity of first- and second-generation HSP90 inhibitors. Here, we report on NW457, a novel radicicol-derived member of the pochoxime family with reduced hepatotoxicity, how it inhibits the DNA damage response and how it synergizes with ionizing irradiation to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer in vitro and in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Quimiorradioterapia/métodos , Neoplasias Colorretais/terapia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Macrolídeos/uso terapêutico , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/química , Apoptose/efeitos da radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Células HCT116 , Hepatócitos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Testes de Função Hepática , Macrolídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Cultura Primária de Células , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Radiossensibilizantes/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Glia ; 64(4): 635-49, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26683584

RESUMO

Microglia, innate immune cells of the CNS, sense infection and damage through overlapping receptor sets. Toll-like receptor (TLR) 4 recognizes bacterial lipopolysaccharide (LPS) and multiple injury-associated factors. We show that its co-receptor CD14 serves three non-redundant functions in microglia. First, it confers an up to 100-fold higher LPS sensitivity compared to peripheral macrophages to enable efficient proinflammatory cytokine induction. Second, CD14 prevents excessive responses to massive LPS challenges via an interferon ß-mediated feedback. Third, CD14 is mandatory for microglial reactions to tissue damage-associated signals. In mice, these functions are essential for balanced CNS responses to bacterial infection, traumatic and ischemic injuries, since CD14 deficiency causes either hypo- or hyperinflammation, insufficient or exaggerated immune cell recruitment or worsened stroke outcomes. While CD14 orchestrates functions of TLR4 and related immune receptors, it is itself regulated by TLR and non-TLR systems to thereby fine-tune microglial damage-sensing capacity upon infectious and non-infectious CNS challenges.


Assuntos
Lesões Encefálicas/imunologia , Isquemia Encefálica/imunologia , Infecções por Escherichia coli/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Microglia/imunologia , Acidente Vascular Cerebral/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Modelos Animais de Doenças , Escherichia coli , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Retroalimentação Fisiológica/fisiologia , Infarto da Artéria Cerebral Média , Interferon beta/metabolismo , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação , Acidente Vascular Cerebral/patologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Cancer Lett ; 365(2): 211-22, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26044951

RESUMO

Radiotherapy is an essential part of multi-modal treatment for soft tissue sarcomas. Treatment failure is commonly attributed to radioresistance, but comprehensive analyses of radiosensitivity are not available, and suitable biomarkers or candidates for targeted radiosensitization are scarce. Here, we systematically analyzed the intrinsic radioresistance of a panel of soft tissue sarcoma cell lines, and extracted scores of radioresistance by principal component analysis (PCA). To identify molecular markers of radioresistance, transcriptomic profiling of DNA damage response regulators was performed. The expression levels of HSP90 and its clients ATR, ATM, and NBS1 revealed strong, positive correlations with the PCA-derived radioresistance scores. Their functional involvement was addressed by HSP90 inhibition, which preferentially sensitized radioresistant sarcoma cells and was accompanied by delayed γ-H2AX foci clearance and HSP90 client protein degradation. The induction of apoptosis and necrosis was not significantly enhanced, but increased levels of basal and irradiation-induced senescence upon HSP90 inhibition were detected. Finally, evaluation of our findings in the TCGA soft tissue sarcoma cohort revealed elevated expression levels of HSP90, ATR, ATM, and NBS1 in a relevant subset of cases with particularly poor prognosis, which might preferentially benefit from HSP90 inhibition in combination with radiotherapy in the future.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Tolerância a Radiação/genética , Sarcoma/radioterapia , Neoplasias de Tecidos Moles/radioterapia , Apoptose/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Senescência Celular/genética , Terapia Combinada , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares/biossíntese , Análise de Componente Principal
13.
Cancer Lett ; 368(2): 209-29, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25754814

RESUMO

Radiotherapy represents an essential treatment option for the majority of cancer patients in different stages of their disease. Physical achievements of the recent years led to the implementation of high precision treatment planning procedures, and image-guided dose delivery is current state of the art. Yet, radiotherapy still faces several limitations with cancer intrinsic radioresistance being a key driver of therapeutic failure. Accordingly, the mechanisms orchestrating radioresistance and their therapeutic targeting by combined modality approaches are in the center of attention of numerous radiation oncologists. In the present review, we summarize and discuss therapeutic approaches that exploit the heat shock response, either by hyperthermia or by pharmacological heat shock protein inhibition, in combination with radiotherapy. These strategies appear particularly promising, since they sensitize cancer cells to irradiation-induced cell death and at the same time have proven the potential to promote systemic anti-tumor immune mechanisms, which may target not only locally surviving tumor cells, but also distant out-of-field metastases.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Resposta ao Choque Térmico/efeitos da radiação , Hipertermia Induzida/métodos , Neoplasias/imunologia , Neoplasias/radioterapia , Animais , Morte Celular/imunologia , Morte Celular/efeitos da radiação , Terapia Combinada , Proteínas de Choque Térmico HSP90/imunologia , Proteínas de Choque Térmico/imunologia , Resposta ao Choque Térmico/imunologia , Humanos
14.
Radiat Oncol ; 9(1): 85, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24666643

RESUMO

BACKGROUND: Radiotherapy, administered in fractionated as well as ablative settings, is an essential treatment component for breast cancer. Besides the direct tumor cell death inducing effects, there is growing evidence that immune mechanisms contribute - at least in part - to its therapeutic success. The present study was designed to characterize the type and the extent of cell death induced by fractionated and ablative radiotherapy as well as its impact on the release of monocyte migration stimulating factors by dying breast cancer cells. METHODS: Cell death and senescence assays were employed to characterize the response of a panel of breast cancer cell lines with different receptor and p53 status towards γ-irradiation applied in a fractionated (daily doses of 2 Gy) or ablative setting (single dose of 20 Gy). Cell-free culture supernatants were examined for their monocyte migration stimulating potential in transwell migration and 2D chemotaxis/chemokinesis assays. Irradiation-induced transcriptional responses were analyzed by qRT-PCR, and CD39 surface expression was measured by flow cytometry. RESULTS: Fast proliferating, hormone receptor negative breast cancer cell lines with defective p53 predominantly underwent primary necrosis in response to γ-irradiation when applied at a single, ablative dose of 20 Gy, whereas hormone receptor positive, p53 wildtype cells revealed a combination of apoptosis, primary, and secondary (post-apoptotic) necrosis. During necrosis the dying tumor cells released apyrase-sensitive nucleotides, which effectively stimulated monocyte migration and chemokinesis. In hormone receptor positive cells with functional p53 this was hampered by irradiation-induced surface expression of the ectonucleotidase CD39. CONCLUSIONS: Our study shows that ablative radiotherapy potently induces necrosis in fast proliferating, hormone receptor negative breast cancer cell lines with mutant p53, which in turn release monocyte migration and chemokinesis stimulating nucleotides. Future studies have to elucidate, whether these mechanisms might be utilized in order to stimulate intra-tumoral monocyte recruitment and subsequent priming of adaptive anti-tumor immune responses, and which breast cancer subtypes might be best suited for such approaches.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Raios gama , Monócitos/citologia , Antígenos CD/metabolismo , Apoptose , Apirase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Separação Celular , Análise Mutacional de DNA , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Mutação , Necrose , Nucleotídeos/metabolismo , Proteína Supressora de Tumor p53/genética , Raios X
15.
Radiat Environ Biophys ; 53(1): 1-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24141602

RESUMO

Based on its potent capacity to induce tumor cell death and to abrogate clonogenic survival, radiotherapy is a key part of multimodal cancer treatment approaches. Numerous clinical trials have documented the clear correlation between improved local control and increased overall survival. However, despite all progress, the efficacy of radiation-based treatment approaches is still limited by different technological, biological, and clinical constraints. In principle, the following major issues can be distinguished: (1) The intrinsic radiation resistance of several tumors is higher than that of the surrounding normal tissue, (2) the true patho-anatomical borders of tumors or areas at risk are not perfectly identifiable, (3) the treatment volume cannot be adjusted properly during a given treatment series, and (4) the individual heterogeneity in terms of tumor and normal tissue responses toward irradiation is immense. At present, research efforts in radiation oncology follow three major tracks, in order to address these limitations: (1) implementation of molecularly targeted agents and 'omics'-based screening and stratification procedures, (2) improvement of treatment planning, imaging, and accuracy of dose application, and (3) clinical implementation of other types of radiation, including protons and heavy ions. Several of these strategies have already revealed promising improvements with regard to clinical outcome. Nevertheless, many open questions remain with individualization of treatment approaches being a key problem. In the present review, the current status of radiation-based cancer treatment with particular focus on novel aspects and developments that will influence the field of radiation oncology in the near future is summarized and discussed.


Assuntos
Radioterapia (Especialidade)/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/radioterapia , Prognóstico , Radioterapia/efeitos adversos
16.
J Immunol ; 189(12): 5722-8, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23150713

RESUMO

The elimination of apoptotic cells, called efferocytosis, is fundamentally important for tissue homeostasis and prevents the onset of inflammation and autoimmunity. Serum proteins are known to assist in this complex process. In the current study, we performed a multistep chromatographic fractionation of human serum and identified plasminogen, a protein involved in fibrinolysis, wound healing, and tissue remodeling, as a novel serum-derived factor promoting apoptotic cell removal. Even at levels significantly lower than its serum concentration, purified plasminogen strongly enhanced apoptotic prey cell internalization by macrophages. Plasminogen acted mainly on prey cells, whereas on macrophages no enhancement of the engulfment process was observed. We further demonstrate that the efferocytosis-promoting activity essentially required the proteolytic activation of plasminogen and was completely abrogated by the urokinase plasminogen activator inhibitor-1 and serine protease inhibitor aprotinin. Thus, our study assigns a new function to plasminogen and plasmin in apoptotic cell clearance.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/imunologia , Fagocitose/imunologia , Plasminogênio/metabolismo , Sistema ABO de Grupos Sanguíneos/sangue , Proteínas Reguladoras de Apoptose/sangue , Linhagem Celular Tumoral , Cromatografia de Afinidade/métodos , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Plasminogênio/deficiência , Plasminogênio/fisiologia , Cultura Primária de Células , Soro/imunologia
17.
Front Oncol ; 2: 116, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973558

RESUMO

The induction of tumor cell death is one of the major goals of radiotherapy and has been considered to be the central determinant of its therapeutic outcome for a long time. However, accumulating evidence suggests that the success of radiotherapy does not only derive from direct cytotoxic effects on the tumor cells alone, but instead might also depend - at least in part - on innate as well as adaptive immune responses, which can particularly target tumor cells that survive local irradiation. The clearance of dying tumor cells by phagocytic cells of the innate immune system represents a crucial step in this scenario. Dendritic cells and macrophages, which engulf, process and present dying tumor cell material to adaptive immune cells, can trigger, skew, or inhibit adaptive immune responses, respectively. In this review we summarize the current knowledge of different forms of cell death induced by ionizing radiation, the multi-step process of dying cell clearance, and its immunological consequences with special regard toward the potential exploitation of these mechanisms for the improvement of tumor radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...