Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Res Sq ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38883711

RESUMO

Background: Genetic mitochondrial diseases are a major challenge in modern medicine, impacting around 1:4,000 individuals. Leigh syndrome is the most common pediatric presentation of mitochondrial disease. There are currently no effective clinical treatments for mitochondrial disease. In humans, patients are often treated with antioxidants, vitamins, and strategies targeting energetics. The vitamin-E related compound vatiquinone (EPI-743, α-tocotrienol quinone) has been the subject of at least 19 clinical trials in the US since 2012, but the effects of vatiquinone on an animal model of mitochondrial disease have not yet been reported. Here, assessed the impact of vatiquinone on disease progression and in two animal models of mitochondrial disease. Methods: The efficacy of vatiquinone in vitro was assessed using human fibroblasts treated with the general mitochondrial oxidative stress inducer paraquat, the GPX4 inhibitor RSL3, or the glutathione synthase inhibitor BSO in combination with excess iron. The therapeutic potential of vatiquinone in vivo was assessed using tamoxifen-induced mouse model for GPX4 deficiency and the Ndufs4 knockout mouse model of Leigh syndrome. In both models, animals were treated daily with vatiquinone or vehicle and relevant disease endpoints were assessed. Results: Vatiquinone robustly prevented death in cultured cells induced by RSL3 or BSO/iron, but had no effect on paraquat induced cell death. Vatiquinone had no impact on disease onset, progression, or survival in either the tamoxifen-inducible GPX4 deficient model or the Ndufs4(-/-) mouse model, though the drug may have reduced seizure risk. Conclusions: Vatiquinone provided no benefit to survival in two mouse models of disease, but may prevent seizures in the Ndufs4(-/-) model. Our findings are consistent with recent press statements regarding clinical trial results and have implications for drug trial design and reporting in patients with rare diseases.

2.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38680020

RESUMO

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Assuntos
Progressão da Doença , Complexo I de Transporte de Elétrons , Interferon gama , Doença de Leigh , Animais , Camundongos , Tronco Encefálico/patologia , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Interferon gama/metabolismo , Doença de Leigh/patologia , Doença de Leigh/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Anesthesiology ; 140(4): 715-728, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147628

RESUMO

BACKGROUND: Volatile anesthetics induce hyperpolarizing potassium currents in spinal cord neurons that may contribute to their mechanism of action. They are induced at lower concentrations of isoflurane in noncholinergic neurons from mice carrying a loss-of-function mutation of the Ndufs4 gene, required for mitochondrial complex I function. The yeast NADH dehydrogenase enzyme, NDi1, can restore mitochondrial function in the absence of normal complex I activity, and gain-of-function Ndi1 transgenic mice are resistant to volatile anesthetics. The authors tested whether NDi1 would reduce the hyperpolarization caused by isoflurane in neurons from Ndufs4 and wild-type mice. Since volatile anesthetic behavioral hypersensitivity in Ndufs4 is transduced uniquely by glutamatergic neurons, it was also tested whether these currents were also unique to glutamatergic neurons in the Ndufs4 spinal cord. METHODS: Spinal cord neurons from wild-type, NDi1, and Ndufs4 mice were patch clamped to characterize isoflurane sensitive currents. Neuron types were marked using fluorescent markers for cholinergic, glutamatergic, and γ-aminobutyric acid-mediated (GABAergic) neurons. Norfluoxetine was used to identify potassium channel type. Neuron type-specific Ndufs4 knockout animals were generated using type-specific Cre-recombinase with floxed Ndufs4. RESULTS: Resting membrane potentials (RMPs) of neurons from NDi1;Ndufs4, unlike those from Ndufs4, were not hyperpolarized by 0.6% isoflurane (Ndufs4, ΔRMP -8.2 mV [-10 to -6.6]; P = 1.3e-07; Ndi1;Ndufs4, ΔRMP -2.1 mV [-7.6 to +1.4]; P = 1). Neurons from NDi1 animals in a wild-type background were not hyperpolarized by 1.8% isoflurane (wild-type, ΔRMP, -5.2 mV [-7.3 to -3.2]; P = 0.00057; Ndi1, ΔRMP, 0.6 mV [-1.7 to 3.2]; P = 0.68). In spinal cord slices from global Ndufs4 animals, holding currents (HC) were induced by 0.6% isoflurane in both GABAergic (ΔHC, 81.3 pA [61.7 to 101.4]; P = 2.6e-05) and glutamatergic (ΔHC, 101.2 pA [63.0 to 146.2]; P = 0.0076) neurons. In neuron type-specific Ndufs4 knockouts, HCs were increased in cholinergic (ΔHC, 119.5 pA [82.3 to 156.7]; P = 0.00019) and trended toward increase in glutamatergic (ΔHC, 85.5 pA [49 to 126.9]; P = 0.064) neurons but not in GABAergic neurons. CONCLUSIONS: Bypassing complex I by overexpression of NDi1 eliminates increases in potassium currents induced by isoflurane in the spinal cord. The isoflurane-induced potassium currents in glutamatergic neurons represent a potential downstream mechanism of complex I inhibition in determining minimum alveolar concentration.


Assuntos
Anestésicos Inalatórios , Isoflurano , Camundongos , Animais , Isoflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Canais de Potássio , Medula Espinal , Camundongos Transgênicos , Interneurônios , Complexo I de Transporte de Elétrons/genética , Colinérgicos
4.
Nat Metab ; 5(6): 955-967, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37365290

RESUMO

Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Camundongos , Animais , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Acarbose/farmacologia , Acarbose/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Mitocôndrias/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons
5.
Curr Biol ; 32(14): 3016-3032.e3, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35688155

RESUMO

The mechanisms of volatile anesthetic action remain among the most perplexing mysteries of medicine. Across phylogeny, volatile anesthetics selectively inhibit mitochondrial complex I, and they also depress presynaptic excitatory signaling. To explore how these effects are linked, we studied isoflurane effects on presynaptic vesicle cycling and ATP levels in hippocampal cultured neurons from wild-type and complex I mutant (Ndufs4(KO)) mice. To bypass complex I, we measured isoflurane effects on anesthetic sensitivity in mice expressing NADH dehydrogenase (NDi1). Endocytosis in physiologic concentrations of glucose was delayed by effective behavioral concentrations of isoflurane in both wild-type (τ [unexposed] 44.8 ± 24.2 s; τ [exposed] 116.1 ± 28.1 s; p < 0.01) and Ndufs4(KO) cultures (τ [unexposed] 67.6 ± 16.0 s; τ [exposed] 128.4 ± 42.9 s; p = 0.028). Increasing glucose, to enhance glycolysis and increase ATP production, led to maintenance of both ATP levels and endocytosis (τ [unexposed] 28.0 ± 14.4; τ [exposed] 38.2 ± 5.7; reducing glucose worsened ATP levels and depressed endocytosis (τ [unexposed] 85.4 ± 69.3; τ [exposed] > 1,000; p < 0.001). The block in recycling occurred at the level of reuptake of synaptic vesicles into the presynaptic cell. Expression of NDi1 in wild-type mice caused behavioral resistance to isoflurane for tail clamp response (EC50 Ndi1(-) 1.27% ± 0.14%; Ndi1(+) 1.55% ± 0.13%) and halothane (EC50 Ndi1(-) 1.20% ± 0.11%; Ndi1(+) 1.46% ± 0.10%); expression of NDi1 in neurons improved hippocampal function, alleviated inhibition of presynaptic recycling, and increased ATP levels during isoflurane exposure. The clear alignment of cell culture data to in vivo phenotypes of both isoflurane-sensitive and -resistant mice indicates that inhibition of mitochondrial complex I is a primary mechanism of action of volatile anesthetics.


Assuntos
Anestésicos Inalatórios , Isoflurano , Trifosfato de Adenosina , Anestésicos Inalatórios/farmacologia , Animais , Complexo I de Transporte de Elétrons/genética , Endocitose , Glucose , Isoflurano/farmacologia , Camundongos
6.
Neurobiol Dis ; 163: 105594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933094

RESUMO

Genetic mitochondrial diseases are the most frequent cause of inherited metabolic disorders and one of the most prevalent causes of heritable neurological disease. Leigh syndrome is the most common clinical presentation of pediatric mitochondrial disease, typically appearing in the first few years of life, and involving severe multisystem pathologies. Clinical care for Leigh syndrome patients is difficult, complicated by the wide range of symptoms including characteristic progressive CNS lesion, metabolic sequelae, and epileptic seizures, which can be intractable to standard management. While no proven therapies yet exist for the underlying mitochondrial disease, a ketogenic diet has led to some reports of success in managing mitochondrial epilepsies, with ketosis reducing seizure risk and severity. The impact of ketosis on other aspects of disease progression in Leigh syndrome has not been studied, however, and a rigorous study of the impact of ketosis on seizures in mitochondrial disease is lacking. Conversely, preclinical efforts have identified the intracellular nutrient signaling regulator mTOR as a promising therapeutic target, with data suggesting the benefits are mediated by metabolic changes. mTOR inhibition alleviates epilepsies arising from defects in TSC, an mTOR regulator, but the therapeutic potential of mTOR inhibition in seizures related to primary mitochondrial dysfunction is unknown. Given that ketogenic diet is used clinically in the setting of mitochondrial disease, and mTOR inhibition is in clinical trials for intractable pediatric epilepsies of diverse causal origins, a direct experimental assessment of their effects is imperative. Here, we define the impact of dietary ketosis on survival and CNS disease in the Ndufs4(KO) mouse model of Leigh syndrome and the therapeutic potential of both dietary ketosis and mTOR inhibition on seizures in this model. These data provide timely insight into two important clinical interventions.


Assuntos
Dieta Cetogênica , Doença de Leigh/terapia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/dietoterapia , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Camundongos , Camundongos Knockout , Sirolimo/farmacologia , Resultado do Tratamento
7.
Br J Anaesth ; 128(1): 77-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34857359

RESUMO

BACKGROUND: If anaesthetics cause permanent cognitive deficits in some children, the implications are enormous, but the molecular causes of anaesthetic-induced neurotoxicity, and consequently possible therapies, are still debated. Anaesthetic exposure early in development can be neurotoxic in the invertebrate Caenorhabditis elegans causing endoplasmic reticulum (ER) stress and defects in chemotaxis during adulthood. We screened this model organism for compounds that alleviated neurotoxicity, and then tested these candidates for efficacy in mice. METHODS: We screened compounds for alleviation of ER stress induction by isoflurane in C. elegans assayed by induction of a green fluorescent protein (GFP) reporter. Drugs that inhibited ER stress were screened for reduction of the anaesthetic-induced chemotaxis defect. Compounds that alleviated both aspects of neurotoxicity were then blindly tested for the ability to inhibit induction of caspase-3 by isoflurane in P7 mice. RESULTS: Isoflurane increased ER stress indicated by increased GFP reporter fluorescence (240% increase, P<0.001). Nine compounds reduced induction of ER stress by isoflurane by 90-95% (P<0.001 in all cases). Of these compounds, tetraethylammonium chloride and trehalose also alleviated the isoflurane-induced defect in chemotaxis (trehalose by 44%, P=0.001; tetraethylammonium chloride by 23%, P<0.001). In mouse brain, tetraethylammonium chloride reduced isoflurane-induced caspase staining in the anterior cortical (-54%, P=0.007) and hippocampal regions (-46%, P=0.002). DISCUSSION: Tetraethylammonium chloride alleviated isoflurane-induced neurotoxicity in two widely divergent species, raising the likelihood that it may have therapeutic value. In C. elegans, ER stress predicts isoflurane-induced neurotoxicity, but is not its cause.


Assuntos
Isoflurano/toxicidade , Síndromes Neurotóxicas/prevenção & controle , Tetraetilamônio/farmacologia , Anestésicos Inalatórios/toxicidade , Animais , Caenorhabditis elegans , Caspase 3/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Camundongos , Síndromes Neurotóxicas/etiologia , Especificidade da Espécie
8.
Nat Commun ; 11(1): 2413, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415094

RESUMO

Photonic integrated circuits (PICs) are revolutionizing nanotechnology, with far-reaching applications in telecommunications, molecular sensing, and quantum information. PIC designs rely on mature nanofabrication processes and readily available and optimised photonic components (gratings, splitters, couplers). Hybrid plasmonic elements can enhance PIC functionality (e.g., wavelength-scale polarization rotation, nanoscale optical volumes, and enhanced nonlinearities), but most PIC-compatible designs use single plasmonic elements, with more complex circuits typically requiring ab initio designs. Here we demonstrate a modular approach to post-processes off-the-shelf silicon-on-insulator (SOI) waveguides into hybrid plasmonic integrated circuits. These consist of a plasmonic rotator and a nanofocusser, which generate the second harmonic frequency of the incoming light. We characterize each component's performance on the SOI waveguide, experimentally demonstrating intensity enhancements of more than 200 in an inferred mode area of 100 nm2, at a pump wavelength of 1320 nm. This modular approach to plasmonic circuitry makes the applications of this technology more practical.

9.
Mol Genet Metab ; 130(2): 118-132, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331968

RESUMO

Leigh Syndrome (LS) is a mitochondrial disorder defined by progressive focal neurodegenerative lesions in specific regions of the brain. Defects in NDUFS4, a subunit of complex I of the mitochondrial electron transport chain, cause LS in humans; the Ndufs4 knockout mouse (Ndufs4(KO)) closely resembles the human disease. Here, we probed brain region-specific molecular signatures in pre-symptomatic Ndufs4(KO) to identify factors which underlie focal neurodegeneration. Metabolomics revealed that free amino acid concentrations are broadly different by region, and glucose metabolites are increased in a manner dependent on both region and genotype. We then tested the impact of the mTOR inhibitor rapamycin, which dramatically attenuates LS in Ndufs4(KO), on region specific metabolism. Our data revealed that loss of Ndufs4 drives pathogenic changes to CNS glutamine/glutamate/α-ketoglutarate metabolism which are rescued by mTOR inhibition Finally, restriction of the Ndufs4 deletion to pre-synaptic glutamatergic neurons recapitulated the whole-body knockout. Together, our findings are consistent with mTOR inhibition alleviating disease by increasing availability of α-ketoglutarate, which is both an efficient mitochondrial complex I substrate in Ndufs4(KO) and an important metabolite related to neurotransmitter metabolism in glutamatergic neurons.


Assuntos
Encéfalo/patologia , Complexo I de Transporte de Elétrons/fisiologia , Ácido Glutâmico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Doença de Leigh/patologia , Metaboloma , Doenças Mitocondriais/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Doença de Leigh/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Mitocondriais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
J Synchrotron Radiat ; 26(Pt 5): 1782-1789, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490170

RESUMO

A fabrication method comprising near-field holography (NFH) with an electron beam lithography (EBL)-written phase mask was developed to fabricate soft X-ray varied-line-spacing gratings (VLSGs). An EBL-written phase mask with an area of 52 mm × 30 mm and a central line density greater than 3000 lines mm-1 was used. The introduction of the EBL-written phase mask substantially simplified the NFH optics for pattern transfer. The characterization of the groove density distribution and diffraction efficiency of the fabricated VLSGs indicates that the EBL-NFH method is feasible and promising for achieving high-accuracy groove density distributions with corresponding image properties. Vertical stray light is suppressed in the soft X-ray spectral range.

11.
Opt Lett ; 43(4): 811-814, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444000

RESUMO

Near-field holography (NFH) combined with electron beam lithography (EBL)-written phase masks is a promising method for the rapid realization of diffraction gratings with high resolution and high accuracy in line density distribution. We demonstrate a dynamic exposure method in which the grating substrate is shifted during pattern transfer. This reduces the effects of stitching errors, resulting in the decreased intensity of the optical stray light (i.e., Rowland ghosts). We demonstrate the intensity suppression of ghosts by 60%. This illustrates the potential for dynamic NFH to suppress undesirable periodic patterns from phase masks and alleviate the stitching errors induced by EBL.

12.
Front Hum Neurosci ; 11: 600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276483

RESUMO

Introduction: Many studies report improvements in cognitive performance following acute endurance exercise compared to control group treatment. These cognitive benefits are interpreted as a result of a physiological response to exercise. However, it was also hypothesized that expectation-driven placebo effects account for these positive effects. The purpose of this study was to investigate the differences between expectations for cognitive benefits toward acute endurance exercise and multiple control group treatments. Methods: Healthy individuals (N = 247, 24.26 ± 3.88 years) were randomized to eight different groups watching videos of a moderate, a vigorous exercise treatment or one control group treatment (waiting, reading, video-watching, stretching, myofascial release workout, and very light exercise). Then, they were introduced to three commonly used cognitive test procedures in acute exercise-cognition research (Stroop-test, Trail-Making-test, Free-recall-task). Participants rated the effect they would expect on their performance in those tasks, if they had received the treatment shortly before the task, on an 11-point Likert scale. Results: No significantly different expectations for cognitive benefits toward acute moderate exercise and control group treatments could be revealed. Participants expected significantly worse performance following vigorous exercise compared to following waiting and stretching for all cognitive tests. Significantly worse performance after vigorous exercise compared to after very light exercise was expected for Stroop and Free-recall. For Free-recall, participants expected worse performance after vigorous exercise compared to myofascial release training as well. Conclusion: Our results indicate that expectation-driven placebo effects are unlikely to cause the reported greater cognitive improvements following acute moderate and vigorous endurance exercise compared to following common control group treatments.

13.
Opt Lett ; 42(19): 3816-3819, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957136

RESUMO

We report the fabrication of periodic structures with a critical dimension of 90 nm on a fused silica substrate by i-line (λ=365 nm) proximity mask-aligner lithography. This realization results from the combination of the improvements of the optical system in the mask aligner (known as MO exposure optics), short-period phase-mask optimization, and the implementation of self-aligned double patterning (SADP). A 350 nm period grating is transferred into a sacrificial polymer layer and coated with an aluminum layer. The removal of the metal initially present on the horizontal surfaces and on top of the polymer grating leaves a 175 nm period grating on the wafer, which can be used as a wire grid polarizer. A computation of the efficiency is performed from the measured profile and confirms the deep-blue visible to infra-red operation range.

15.
PLoS One ; 11(1): e0148219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26824698

RESUMO

BACKGROUND: Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase), causes Leigh syndrome (LS), a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration. RESULTS: Here we used the Ndufs4(KO) mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient "rest" of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration) with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration) and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue native gels, could explain regional neurodegeneration. CONCLUSION: Our data suggests that locally insufficient respiration capacity of the nerve terminals may drive focal neurodegeneration.


Assuntos
Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Mitocôndrias/metabolismo , Bulbo Olfatório/metabolismo , Animais , Tronco Encefálico/patologia , Respiração Celular/genética , Cerebelo/patologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/deficiência , Expressão Gênica , Ácido Glutâmico/metabolismo , Glicólise/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Malatos/metabolismo , Camundongos , Mitocôndrias/patologia , Bulbo Olfatório/patologia , Especificidade de Órgãos , Fosforilação Oxidativa , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/patologia
16.
Nanotechnology ; 27(6): 065301, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26684215

RESUMO

Nonlinear optical nanoscale waveguides are a compact and powerful platform for efficient wavelength conversion. The free-standing waveguide geometry opens a range of applications in microscopy for local delivery of light, where in situ wavelength conversion helps to overcome various wavelength-dependent issues, such as biological tissue damage. In this paper, we present an original patterning method for high-precision fabrication of free-standing nanoscale waveguides based on lithium niobate, a material with a strong second-order nonlinearity and a broad transparency window covering the visible and mid-infrared wavelength ranges. The fabrication process combines electron-beam lithography with ion-beam enhanced etching and produces nanowaveguides with lengths from 5 to 50 µm, widths from 50 to 1000 nm and heights from 50 to 500 nm, each with a precision of few nanometers. The fabricated nanowaveguides are tested in an optical characterization experiment showing efficient second-harmonic generation.

17.
Proc Natl Acad Sci U S A ; 112(45): E6148-57, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504246

RESUMO

Mitochondria play an important role in numerous diseases as well as normative aging. Severe reduction in mitochondrial function contributes to childhood disorders such as Leigh Syndrome, whereas mild disruption can extend the lifespan of model organisms. The Caenorhabditis elegans isp-1 gene encodes the Rieske iron-sulfur protein subunit of cytochrome c oxidoreductase (complex III of the electron transport chain). The partial loss of function allele, isp-1(qm150), leads to several pleiotropic phenotypes. To better understand the molecular mechanisms of ISP-1 function, we sought to identify genetic suppressors of the delayed development of isp-1(qm150) animals. Here we report a series of intragenic suppressors, all located within a highly conserved six amino acid tether region of ISP-1. These intragenic mutations suppress all of the evaluated isp-1(qm150) phenotypes, including developmental rate, pharyngeal pumping rate, brood size, body movement, activation of the mitochondrial unfolded protein response reporter, CO2 production, mitochondrial oxidative phosphorylation, and lifespan extension. Furthermore, analogous mutations show a similar effect when engineered into the budding yeast Rieske iron-sulfur protein Rip1, revealing remarkable conservation of the structure-function relationship of these residues across highly divergent species. The focus on a single subunit as causal both in generation and in suppression of diverse pleiotropic phenotypes points to a common underlying molecular mechanism, for which we propose a "spring-loaded" model. These observations provide insights into how gating and control processes influence the function of ISP-1 in mediating pleiotropic phenotypes including developmental rate, movement, sensitivity to stress, and longevity.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Pleiotropia Genética/genética , Modelos Moleculares , Fenótipo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Tamanho da Ninhada/genética , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Crescimento e Desenvolvimento/genética , Longevidade/genética , Microscopia de Fluorescência , Movimento/fisiologia , Mutagênese , Mutação/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Engenharia de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética
18.
Opt Express ; 23(13): 16628-37, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191675

RESUMO

Diffractive mask-aligner lithography allows printing structures that have a sub-micrometer resolution by using non-contact mode. For such a purpose, masks are often designed to operate with monochromatic linearly polarized light, which is obtained by placing a spectral filter and a polarizer in the beam path. We propose here a mask design that includes a wire-grid polarizer (WGP) on the top side of a photo-mask and a diffractive element on the bottom one to print a 350 nm period grating by using a classical mask-aligner in proximity exposure mode. Linearly polarizing locally an unpolarized incident beam is only possible by using a WGP on the top side of the mask. This configuration opens the possibility to use different linear polarization orientation on a single mask and allows to print high resolution structures with different orientation within one exposure.

19.
Opt Express ; 23(14): 17955-65, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191855

RESUMO

Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

20.
Opt Lett ; 40(12): 2715-8, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26076244

RESUMO

Nanoscale waveguides are basic building blocks of integrated optical devices. Especially, waveguides made from nonlinear optical materials, such as lithium niobate, allow access to a broad range of applications using second-order nonlinear frequency conversion processes. Based on a lithium niobate on insulator substrate, millimeter-long nanoscale waveguides were fabricated with widths as small as 200 nm. The fabrication was done by means of potassium hydroxide-assisted ion-beam-enhanced etching. The waveguides were optically characterized in the near infrared wavelength range showing phase-matched second-harmonic generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...