Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 52(64): 9917-20, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27431207

RESUMO

Bis(mesitoyl)phosphinic acid and its sodium salt display a unique photo-induced reactivity: both derivatives stepwise release two mesitoyl radicals and, remarkably, metaphosphorous acid (previously postulated as transient species in the gas phase), providing a new phosphorus-based reagent.

2.
J Org Chem ; 81(15): 6292-302, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27391671

RESUMO

Bilin chromophores and bilirubin are involved in relevant biological functions such as light perception in plants and as protective agents against Alzheimer and other diseases. Despite their extensive use, a deep rationalization of the main factors controlling the thermal and photochemical properties has not been performed yet, which in turn hampers further applications of these versatile molecules. In an effort to understand those factors and allow control of the relevant properties, a combined experimental and computational study has been carried out for diverse model systems to understand the interconversion between Z and E isomers. In this study, we have demonstrated the crucial role of steric hindrance and hydrogen-bond interactions in thermal stability and the ability to control them by designing novel compounds. We also determined several photochemical properties and studied the photodynamics of two model systems in more detail, observing a fast relaxation of the excited state shorter than 2 ps in both cases. Finally, the computational study allowed us to rationalize the experimental evidence.


Assuntos
Pigmentos Biliares/química , Bilirrubina/química , Simulação por Computador , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Mutação , Processos Fotoquímicos , Software , Estereoisomerismo
3.
J Phys Chem A ; 119(35): 9225-35, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26266823

RESUMO

The photolysis of o-nitrophenol (o-NP), a typical push-pull molecule, is of current interest in atmospheric chemistry as a possible source of nitrous acid (HONO). To characterize the largely unknown photolysis mechanism, the dynamics of the lowest lying excited singlet state (S1) of o-NP was investigated by means of femtosecond transient absorption spectroscopy in solution, time-resolved photoelectron spectroscopy (TRPES) in the gas phase and quantum chemical calculations. Evidence of the unstable aci-nitro isomer is provided both in the liquid and in the gas phase. Our results indicate that the S1 state displays strong charge transfer character, which triggers excited state proton transfer from the OH to the NO2 group as evidenced by a temporal shift of 20 fs of the onset of the photoelectron spectrum. The proton transfer itself is found to be coupled to an out-of-plane rotation of the newly formed HONO group, finally leading to a conical intersection between S1 and the ground state S0. In solution, return to S0 within 0.2-0.3 ps was monitored by stimulated emission. As a competitive relaxation channel, ultrafast intersystem crossing to the upper triplet manifold on a subpicosecond time scale occurs both in solution and in the gas phase. Due to the ultrafast singlet dynamics, we conclude that the much discussed HONO split-off is likely to take place in the triplet manifold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...