Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(23): e2209104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919615

RESUMO

Space cooling and heating, ventilation, and air conditioning (HVAC) accounts for roughly 10% of global electricity use and are responsible for ca. 1.13 gigatonnes of CO2 emissions annually. Adsorbent-based HVAC technologies have long been touted as an energy-efficient alternative to traditional refrigeration systems. However, thus far, no suitable adsorbents have been developed which overcome the drawbacks associated with traditional sorbent materials such as silica gels and zeolites. Metal-organic frameworks (MOFs) offer order-of-magnitude improvements in water adsorption and regeneration energy requirements. However, the deployment of MOFs in HVAC applications has been hampered by issues related to MOF powder processing. Herein, three high-density, shaped, monolithic MOFs (UiO-66, UiO-66-NH2 , and Zr-fumarate) with exceptional volumetric gas/vapor uptake are developed-solving previous issues in MOF-HVAC deployment. The monolithic structures across the mesoporous range are visualized using small-angle X-ray scattering and lattice-gas models, giving accurate predictions of adsorption characteristics of the monolithic materials. It is also demonstrated that a fragile MOF such as Zr-fumarate can be synthesized in monolithic form with a bulk density of 0.76 gcm-3 without losing any adsorption performance, having a coefficient of performance (COP) of 0.71 with a low regeneration temperature (≤ 100 °C).

2.
Nat Commun ; 10(1): 3025, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289274

RESUMO

Efficient use of energy for cooling applications is a very important and challenging field in science. Ultra-low temperature actuated (Tdriving < 80 °C) adsorption-driven chillers (ADCs) with water as the cooling agent are one environmentally benign option. The nanoscale metal-organic framework [Al(OH)(C6H2O4S)] denoted CAU-23 was discovered that possess favorable properties, including water adsorption capacity of 0.37 gH2O/gsorbent around p/p0 = 0.3 and cycling stability of at least 5000 cycles. Most importantly the material has a driving temperature down to 60 °C, which allows for the exploitation of yet mostly unused temperature sources and a more efficient use of energy. These exceptional properties are due to its unique crystal structure, which was unequivocally elucidated by single crystal electron diffraction. Monte Carlo simulations were performed to reveal the water adsorption mechanism at the atomic level. With its green synthesis, CAU-23 is an ideal material to realize ultra-low temperature driven ADC devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...