Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 146: 754-65, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695327

RESUMO

Personal-care products (PCPs) involve a variety of chemicals whose persistency along with their constant release into the environment raised concern to their potential impact on wildlife and humans health. Regarded as emergent contaminants, PCPs demonstrated estrogenic activity leading to the need of new methodologies to detect and remove those compounds from the environment. Molecular imprinting starts with a complex between a template molecule and a functional monomer, which is then polymerized in the presence of a cross-linker. After template removal, the polymer will contain specific cavities. Based on a good selectivity towards the template, molecularly imprinted polymers (MIPs) have been investigated as efficient materials for the analysis and extraction of the so called emergent pollutants contaminants. Rather than lowering the limit of detections, the key theoretical advantage of MIP over existing methodologies is the potential to target specific chemicals. This unique feature, sometime named specificity (as synonym to very high selectivity) allows to use cheap, simple and/or rapid quantitative techniques such as fast separation with ultra-violet (UV) detection, sensors or even spectrometric techniques. When a high degree of selectivity is achieved, samples extracted with MIPs can be directly analyzed without the need of a separation step. However, while some papers clearly demonstrated the specificity of their MIP toward the targeted PCP, such prove is often lacking, especially with real matrices, making it difficult to assess the success of the different approaches. This review paper focusses on the latest development of MIPs for the analysis of personal care products in the environment, with particular emphasis on design, preparation and practical applications of MIPs.


Assuntos
Cosméticos/análise , Cosméticos/isolamento & purificação , Impressão Molecular/métodos , Polímeros/síntese química , Humanos , Nanopartículas/química , Polímeros/química , Extração em Fase Sólida
2.
Anal Chim Acta ; 674(2): 166-75, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20678626

RESUMO

The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

3.
J Pharm Biomed Anal ; 40(3): 509-15, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16326060

RESUMO

Determination of the chiral composition of drugs is nowadays a key step in order to determine purity, activity, bioavailability, biodegradation, etc., of pharmaceuticals. In this article, works published for the last 5 years on the analysis of chiral drugs by liquid separation techniques coupled with mass spectrometry are reviewed. Namely, chiral analysis of pharmaceuticals including, e.g., antiinflammatories, antihypertensives, relaxants, etc., by liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry are included. The importance and interest of the analysis of the enantiomers of the active compound and its metabolites in different biological fluids (plasma, urine, cerebrospinal fluid, etc.) are also discussed.


Assuntos
Preparações Farmacêuticas/análise , Animais , Análise Química do Sangue , Cromatografia Líquida , Eletroforese Capilar , Humanos , Espectrometria de Massas , Urinálise
4.
Anal Chem ; 73(20): 4862-72, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11681462

RESUMO

We have found that the Haarhoff-Van der Linde (HVL) peak function provides excellent fitting to the shapes of CZE peaks. Initially designed for overloaded peaks in gas chromatography, this function describes a Gaussian peak when there is no peak distortion, and a triangular peak when there is no diffusional peak broadening. As such, it is ideal for CZE peaks distorted by electromigration dispersion (EMD). Fitting peaks with this function gives four parameters: three of them can be related to the Gaussian peak that would have been obtained in case of no EMD; the last one is a measure of the peak distortion. Using moving boundary theory, this peak distortion parameter may readily be expressed in terms of analyte and background electrolyte mobilities and concentrations, electric field, and sample injection length. The variance of an HVL peak is shown to be described by a universal function, and a master equation is presented. The region where EMD adds less than 10% to the Gaussian variance is shown to be very narrowly spread around the mobility matching condition. Under typical CZE operating conditions with an analyte at 1% of the BGE concentration, significant peak distortion is always present. Because the total peak variance is not an addition of the Gaussian and triangular contributions, the HVL model and the methodology introduced here should always be used to correctly combine variances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...