Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6031, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758701

RESUMO

High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2 due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2 devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS2/1T-TaS2 heterostructures in which the number of endotaxial metallic H-TaS2 monolayers dictates the number of resistance transitions in 1T-TaS2 lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance.

2.
Chem Mater ; 35(17): 7239-7251, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719035

RESUMO

Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic-phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Although the electronic structure of the Nb analogue has been experimentally investigated, the Ta analogue has received far less attention. Here, we present a comprehensive suite of electronic structure studies on both Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2, resulting in markedly different Fermi wavevectors. The fact that their qualitative magnetic phase diagrams are nevertheless identical shows that hybridization between the intercalant and host lattice mediates the magnetic exchange interactions in both of these materials. We ultimately find that ferromagnetic coupling is stronger in Cr1/3TaS2, but larger spin-orbit coupling (and a stronger Dzyaloshinskii-Moriya interaction) from the heavier host lattice ultimately gives rise to shorter spin textures.

3.
J Am Chem Soc ; 145(36): 20041-20052, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37646536

RESUMO

Some magnetic systems display a shift in the center of their magnetic hysteresis loop away from zero field, a phenomenon termed exchange bias. Despite the extensive use of the exchange bias effect, particularly in magnetic multilayers, for the design of spin-based memory/electronics devices, a comprehensive mechanistic understanding of this effect remains a longstanding problem. Recent work has shown that disorder-induced spin frustration might play a key role in exchange bias, suggesting new materials design approaches for spin-based electronic devices that harness this effect. Here, we design a spin glass with strong spin frustration induced by magnetic disorder by exploiting the distinctive structure of Fe intercalated ZrSe2, where Fe(II) centers are shown to occupy both octahedral and tetrahedral interstitial sites and to distribute between ZrSe2 layers without long-range structural order. Notably, we observe behavior consistent with a magnetically frustrated and multidegenerate ground state in these Fe0.17ZrSe2 single crystals, which persists above room temperature. Moreover, this magnetic frustration leads to a robust and tunable exchange bias up to 250 K. These results not only offer important insights into the effects of magnetic disorder and frustration in magnetic materials generally, but also highlight as design strategy the idea that a large exchange bias can arise from an inhomogeneous microscopic environment without discernible long-range magnetic order. In addition, these results show that intercalated TMDs like Fe0.17ZrSe2 hold potential for spintronic technologies that can achieve room temperature applications.

4.
J Phys Chem C Nanomater Interfaces ; 127(20): 9787-9795, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37255923

RESUMO

Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined-particularly away from ideal packing stoichiometries-and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe2 (FexNbSe2) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...