Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(11): 2228-2243, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34582690

RESUMO

The field of targeted protein degradation (TPD) has grown exponentially over the past decade with the goal of developing therapies that mark proteins for destruction leveraging the ubiquitin-proteasome system. One common approach to achieve TPD is to employ a heterobifunctional molecule, termed as a degrader, to recruit the protein target of interest to the E3 ligase machinery. The resultant generation of an intermediary ternary complex (target-degrader-ligase) is pivotal in the degradation process. Understanding the ternary complex geometry offers valuable insight into selectivity, catalytic efficiency, linker chemistry, and rational degrader design. In this study, we utilize hydrogen-deuterium exchange mass spectrometry (HDX-MS) to identify degrader-induced protein-protein interfaces. We then use these data in conjunction with constrained protein docking to build three-dimensional models of the ternary complex. The approach was used to characterize complex formation between the E3 ligase CRBN and the first bromodomain of BRD4, a prominent oncology target. We show marked differences in the ternary complexes formed in solution based on distinct patterns of deuterium uptake for two degraders, CFT-1297 and dBET6. CFT-1297, which exhibited positive cooperativity, altered the deuterium uptake profile revealing the degrader-induced protein-protein interface of the ternary complex. For CFT-1297, the ternary complexes generated by the highest scoring HDX-constrained docking models differ markedly from those observed in the published crystal structures. These results highlight the potential utility of HDX-MS to provide rapidly accessible structural insights into degrader-induced protein-protein interfaces in solution. They further suggest that degrader ternary complexes exhibit significant conformation flexibility and that biologically relevant complexes may well not exhibit the largest interaction surfaces between proteins. Taken together, the results indicate that methods capable of incorporating linker conformation uncertainty may prove an important component in degrader design moving forward. In addition, the development of scoring functions modified to handle interfaces with no evolved complementarity, for example, through consideration of high levels of water infiltration, may prove valuable. Furthermore, the use of crystal structures as validation tools for novel degrader methods needs to be considered with caution.


Assuntos
Proteínas de Ciclo Celular/química , Simulação por Computador , Medição da Troca de Deutério , Espectrometria de Massas/métodos , Fatores de Transcrição/química , Acetamidas/química , Acetamidas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/química , Indóis/farmacologia , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Piperidinas/química , Piperidinas/farmacologia , Conformação Proteica
2.
Biophys J ; 117(5): 844-855, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427065

RESUMO

Caspases are an important protease family that coordinate inflammation and programmed cell death. Two closely related caspases, caspase-3 and caspase-7, exhibit largely overlapping substrate specificities. Assessing their proteolytic activities individually has therefore proven extremely challenging. Here, we constructed an outer membrane protein G (OmpG) nanopore with a caspase substrate sequence DEVDG grafted into one of the OmpG loops. Cleavage of the substrate sequence in the nanopore by caspase-7 generated a characteristic signal in the current recording of the OmpG nanopore that allowed the determination of the activity of caspase-7 in Escherichia coli cell lysates. Our approach may provide a framework for the activity-based profiling of proteases that share highly similar substrate specificity spectrums.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Caspase 7/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/citologia , Nanoporos , Porinas/química , Caspase 8/metabolismo
3.
ACS Chem Biol ; 13(5): 1279-1290, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29364645

RESUMO

Zinc is emerging as a widely used and important biological regulatory signal. Cellular zinc levels are tightly regulated by a complex array of zinc importers and exporters to control processes such as apoptotic cell death. While caspase inhibition by zinc has been reported previously, the reported inhibition constants were too weak to suggest a critical biological role for zinc-mediated inhibition. In this work, we have adopted a method of assessing available zinc. This allowed assessment of accurate inhibition constants for apoptotic caspases, caspase-3, -6, -7, and -8. Each of these caspases are inhibited by zinc at intracellular levels but with widely differing inhibition constants and different zinc binding stoichiometries. Caspase-3, -6, and -8 appear to be constitutively inhibited by typical zinc levels, and this inhibition must be lifted to allow activation. The inhibition constant for caspase-7 (76 nM) is much weaker than for the other apoptotic caspases (2.6-6.9 nM) suggesting that caspase-7 is not inactivated by normal zinc concentrations but can be inhibited under conditions of zinc stress. Caspase-3, -7, and -8 were found to bind three, one, and two zincs, respectively. In each of these caspases, zinc was present in the active site, in contrast to caspase-6, which binds one zinc allosterically. The most notable new mechanism to emerge from this work is for zinc-mediated inhibition of caspase-8. Zinc binds caspase-8 directly at the active site and at a second site. Zinc binding inhibits formation of the caspase-8 dimer, the activated form of the enzyme. Together these findings suggest that zinc plays a critical role in regulation of apoptosis by direct inactivation of caspases, in a manner that is unique for each caspase.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Zinco/metabolismo , Humanos
4.
Mol Pharm ; 14(12): 4515-4524, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29053277

RESUMO

Therapeutic biologics have various advantages over synthetic drugs in terms of selectivity, their catalytic nature, and, thus, therapeutic efficacy. These properties offer the potential for more effective treatments that may also overcome the undesirable side effects observed due to off-target toxicities of small molecule drugs. Unfortunately, systemic administration of biologics is challenging due to cellular penetration, renal clearance, and enzymatic degradation difficulties. A delivery vehicle that can overcome these challenges and deliver biologics to specific cellular populations has the potential for significant therapeutic impact. In this work, we describe a redox-responsive nanoparticle platform, which can encapsulate hydrophilic proteins and release them only in the presence of a reducing stimulus. We have formulated these nanoparticles using an inverse emulsion polymerization (IEP) methodology, yielding inverse nanoemulsions, or nanogels. We have demonstrated our ability to overcome the liabilities that contribute to activity loss by delivering a highly challenging cargo, functionally active caspase-3, a cysteine protease susceptible to oxidative and self-proteolytic insults, to the cytosol of HeLa cells by encapsulation inside a redox-responsive nanogel.


Assuntos
Produtos Biológicos/administração & dosagem , Caspase 3/administração & dosagem , Citosol/metabolismo , Portadores de Fármacos/química , Nanocápsulas/química , Ditiotreitol/farmacologia , Emulsões/química , Géis/química , Glutationa/farmacologia , Células HeLa , Humanos , Oxirredução/efeitos dos fármacos , Polimerização
5.
Structure ; 25(1): 27-39, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27889207

RESUMO

Caspases, the cysteine proteases that execute apoptosis, are tightly regulated via phosphorylation by a series of kinases. Although all apoptotic caspases work in concert to promote apoptosis, different kinases regulate individual caspases. Several sites of caspase-7 phosphorylation have been reported, but without knowing the molecular details, it has been impossible to exploit or control these complex interactions, which normally prevent unwanted proliferation. During dysregulation, PAK2 kinase plays an alternative anti-apoptotic role, phosphorylating caspase-7 and promoting unfettered cell growth and chemotherapeutic resistance. PAK2 phosphorylates caspase-7 at two sites, inhibiting activity using two different molecular mechanisms, before and during apoptosis. Phosphorylation of caspase-7 S30 allosterically obstructs its interaction with caspase-9, preventing intersubunit linker processing, slowing or preventing caspase-7 activation. S239 phosphorylation renders active caspase-7 incapable of binding substrate, blocking later events in apoptosis. Each of these mechanisms is novel, representing new opportunities for synergistic control of caspases and their counterpart kinases.


Assuntos
Caspase 7/química , Caspase 7/metabolismo , Neoplasias/metabolismo , Serina/metabolismo , Quinases Ativadas por p21/metabolismo , Apoptose , Sítios de Ligação , Caspase 9/metabolismo , Proliferação de Células , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Humanos , Células MCF-7 , Modelos Moleculares , Fosforilação
6.
J Inorg Biochem ; 166: 26-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815979

RESUMO

The factor inhibiting hypoxia inducible factor-1α (FIH) is a nonheme Fe(II)/αKG oxygenase using a 2-His-1-Asp facial triad. FIH activates O2 via oxidative decarboxylation of α-ketoglutarate (αKG) to generate an enzyme-based oxidant which hydroxylates the Asn803 residue within the C-terminal transactivation domain (CTAD) of HIF-1α. Tight coupling of these two sequential reactions requires a structural linkage between the Fe(II) and the substrate binding site to ensure that O2 activation occurs after substrate binds. We tested the hypothesis that the facial triad carboxylate (Asp201) of FIH linked substrate binding and O2 binding sites. Asp201 variants of FIH were constructed and thoroughly characterized in vitro using steady-state kinetics, crystallography, autohydroxylation, and coupling measurements. Our studies revealed each variant activated O2 with a catalytic efficiency similar to that of wild-type (WT) FIH (kcataKM(O2)=0.17µM-1min-1), but led to defects in the coupling of O2 activation to substrate hydroxylation. Steady-state kinetics showed similar catalytic efficiencies for hydroxylation by WT-FIH (kcat/KM(CTAD)=0.42µM-1min-1) and D201G (kcat/KM(CTAD)=0.34µM-1min-1); hydroxylation by D201E was greatly impaired, while hydroxylation by D201A was undetectable. Analysis of the crystal structure of the D201E variant revealed steric crowding near the diffusible ligand site supporting a role for sterics from the facial triad carboxylate in the O2 binding order. Our data support a model in which the facial triad carboxylate Asp201 provides both steric and polar contacts to favor O2 access to the Fe(II) only after substrate binds, leading to coupled turnover in FIH and other αKG oxygenases.


Assuntos
Oxigenases de Função Mista/química , Oxigênio/química , Proteínas Repressoras/química , Substituição de Aminoácidos , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidroxilação , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação de Sentido Incorreto , Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Biomacromolecules ; 16(10): 3161-71, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26331939

RESUMO

Conjugation of biologically active proteins to polymeric materials is of great interest in the treatment of cancer and other diseases of protein deficiency. The conjugation of such biomacromolecules is challenging both due to their hydrophilicity and propensity to denature under non-native conditions. We describe a novel reactive self-assembly approach to "wrap" a protein with polymers, simultaneously protecting its delicate folded state and silencing its enzymatic activity. This approach has been demonstrated using caspase-3, an apoptosis-inducing protein, as the first case study. The protein-polymer conjugation is designed to be reversed under the native conditions for caspase-3, that is, the reducing environment found in the cytosol. The current strategy allowed release and recovery of up to 86% of caspase activity and nanogel-caspase-3 conjugates induced 70-80% apoptotic cell death shortly thereafter. This approach is widely generalizable and should be applicable to the intracellular delivery of a wide range of therapeutic proteins for treatment of complex and genetic diseases.


Assuntos
Polímeros/química , Proteínas/química , Sequência de Aminoácidos , Animais , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular
8.
Methods Enzymol ; 544: 215-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974292

RESUMO

One of the most promising and as yet underutilized means of regulating protein function is exploitation of allosteric sites. All caspases catalyze the same overall reaction, but they perform different biological roles and are differentially regulated. It is our hypothesis that many allosteric sites exist on various caspases and that understanding both the distinct and overlapping mechanisms by which each caspase can be allosterically controlled should ultimately enable caspase-specific inhibition. Here we describe the ongoing work and methods for compiling a comprehensive map of apoptotic caspase allostery. Central to this approach are the use of (i) the embedded record of naturally evolved allosteric sites that are sensitive to zinc-mediated inhibition, phosphorylation, and other posttranslational modifications, (ii) structural and mutagenic approaches, and (iii) novel binding sites identified by both rationally-designed and screening-derived small-molecule inhibitors.


Assuntos
Sítio Alostérico , Caspases/química , Caspases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Inibidores de Caspase/química , Inibidores de Caspase/farmacologia , Caspases/genética , Cristalografia por Raios X/métodos , Descoberta de Drogas , Humanos , Modelos Moleculares , Mutagênese , Conformação Proteica , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...