Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 24(2): e13891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010340

RESUMO

With declining biodiversity worldwide, a better understanding of species diversity and their relationships is imperative for conservation and management efforts. Marine sponges are species-rich ecological key players on coral reefs, but their species diversity is still poorly understood. This is particularly true for the demosponge order Haplosclerida, whose systematic relationships are contentious due to the incongruencies between morphological and molecular phylogenetic hypotheses. The single gene markers applied in previous studies did not resolve these discrepancies. Hence, there is a high need for a genome-wide approach to derive a phylogenetically robust classification and understand this group's evolutionary relationships. To this end, we developed a target enrichment-based multilocus probe assay for the order Haplosclerida using transcriptomic data. This probe assay consists of 20,000 enrichment probes targeting 2956 ultraconserved elements in coding (i.e. exon) regions across the genome and was tested on 26 haplosclerid specimens from the Red Sea. Our target-enrichment approach correctly placed our samples in a well-supported phylogeny, in agreement with previous haplosclerid molecular phylogenies. Our results demonstrate the applicability of high-resolution genomic methods in a systematically complex marine invertebrate group and provide a promising approach for robust phylogenies of Haplosclerida. Subsequently, this will lead to biologically unambiguous taxonomic revisions, better interpretations of biological and ecological observations and new avenues for applied research, conservation and managing declining marine diversity.


Assuntos
Poríferos , Animais , Poríferos/genética , Filogenia , Oceano Índico , Recifes de Corais , Biodiversidade
2.
Zootaxa ; 5254(1): 147-150, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-37044729

RESUMO

Historically, sponge classification is based on the interpretation of morphological characters, whose phylogenetic information content is frequently limited, subject to homoplasies, or prone to environmental plasticity (e.g., Chombard et al. 1998). Therefore, the currently accepted order-level classification of its largest class, Demospongiae, has been largely revised with molecular phylogenetic data (Morrow & Cárdenas 2015). Nevertheless, numerous sponge genera with ambiguous or provisoric phylogenetic placement still await definite classification.


Assuntos
Poríferos , Animais , Filogenia , Poríferos/genética
3.
Zootaxa ; 5369(1): 57-88, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38220726

RESUMO

This study reports on some deep water sponges in the family Polymastiidae collected during the 2017 Abyss Cruise off the East Coast of Australia and the 2003 NORFANZ Expedition to the Lord Howe and Norfolk Ridges in the Tasman Sea, Southwest Pacific Ocean. Species of Radiella, Spinularia, Ridleia, Tentorium and Polymastia were collected from abyssal and bathyal depths. From these collections, seven new species were discovered: Radiella nidula sp. nov., Radiella pumix sp. nov., Radiella sclera sp. nov., Spinularia flagellata sp. nov., Tentorium labium sp. nov., Ridleia echidna sp. nov. and Polymastia norfanzii sp. nov. In addition, two species previously known are redescribed based on the new collections: viz. Polymastia zitteli and Polymastia invaginata.


Assuntos
Doenças Mamárias , Expedições , Mamilos/anormalidades , Poríferos , Animais , Água
4.
Zootaxa ; 5346(3): 201-241, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38221341

RESUMO

The present study examines the taxonomy of sponge specimens with unique chemistry collectively known as Fascaplysinopsis reticulata (Hentschel, 1912). Examination of Hentschels original species upon which the genus Fascaplysinopsis Bergquist, 1980 was based in conjunction with a comparison with recent Indo-west Pacific collections, using morphological and molecular analyses (ITS and 28S rDNA), revealed extensive variation. Fascaplysinopsis reticulata was found to be a species complex comprising the genus Fascaplysinopsis, as well as two new genera: Skolosachlys gen. nov. and Rubrafasciculus gen. nov. The new species of Fascaplysinopsis described are F. palauensis sp. nov., F. klobos sp. nov. and F. ronquinni sp. nov. The new species of Skolosachlys gen. nov. described herein are: S. enlutea sp. nov. and S. nidus sp. nov. The new species described of Rubrafasciculus gen. nov. includes: R. cerasus sp. nov. and R. fijiensis sp. nov..


Assuntos
Poríferos , Animais , Filogenia , DNA Ribossômico
6.
Mar Drugs ; 19(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34436287

RESUMO

Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal pathways and evolution of compound production in sponges. This benefits the discovery rate and yield of bioprospecting for novel marine natural products by identifying lineages with high potential of being new sources of valuable sponge compounds. In this review, we summarize the current biochemical data on sponges and compare the metabolite distribution against a sponge phylogeny. We assess compound specificity to lineages, potential convergences, and suitability as diagnostic phylogenetic markers. Our study finds compound distribution corroborating current (molecular) phylogenetic hypotheses, which include yet unaccepted polyphyly of several demosponge orders and families. Likewise, several compounds and compound groups display a high degree of lineage specificity, which suggests homologous biosynthetic pathways among their taxa, which identifies yet unstudied species of this lineage as promising bioprospecting targets.


Assuntos
Poríferos/química , Animais , Organismos Aquáticos , Humanos , Filogenia , Fitoterapia , Poríferos/classificação
7.
Zootaxa ; 4979(1): 3856, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34187015

RESUMO

The peer-reviewed journal Zootaxa has accelerated the rate of sponge (Porifera) species discoveries in 289 peer-reviewed papers published between 2002 up until the end of 2020, describing 725 new species, six new subspecies, 27 new genera, four new subgenera, and 123 new species and genus names needed to resolve existing homonyms. Zootaxa has been the most prolific of all taxonomic journals in its contributions to describing new taxa of Porifera in modern times. This present article analyses these taxonomic contributions over the past 20 years of Zootaxa, including their trends and highlights pertaining to sponge publications.


Assuntos
Poríferos/classificação , Animais , Publicações Periódicas como Assunto
8.
PeerJ ; 9: e10775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859870

RESUMO

BACKGROUND: Among all present demosponges, lithistids represent a polyphyletic group with exceptionally well-preserved fossils dating back to the Cambrian. Knowledge of their recent diversity, particularly in the Tropical Western Atlantic Ocean (TWA) where they are common in deep waters, is scarce making any comparison between present and past major 'lithistid' faunas difficult. In addition, the lack of sufficient molecular and morphological data hamper any predictions on phylogenetic relationships or phylodiversity from this region. The Harbor Branch Oceanographic Institute (HBOI, Fort Pierce, Florida) holds the largest collection of TWA lithistid sponges worldwide, however, the majority remain to be taxonomically identified and revised. PRINCIPAL FINDINGS: In this study we provide sequences of 249 lithistid demosponges using two independent molecular markers (28S rDNA (C1-D2) and cox1 mtDNA). In addition, a morphological documentation of 70 lithistid specimens is provided in the database of the Sponge Barcoding Project (SBP). This integrated dataset represents the largest and most comprehensive of the TWA lithistids to date. The phylogenetic diversity of 'lithistid' demosponges in the Bahamas and Jamaica are high in comparison to other TWA regions; Theonellidae and Corallistidae dominate the fauna, while Neopeltidae and Macandrewiidae are rare. A proposed tetractinellid suborder, one undescribed genus and several undescribed species are recognized and the Pacific 'lithistid' genera, Herengeria and Awhiowhio, are reported from the TWA for the first time. The higher-taxa relationships of desma-bearing tetractinellids are discussed and topics for revision suggested. CONCLUSION: This first integrative approach of TWA 'lithistid' demosponges contributes to a better understanding of their phylogenetic affinities, diversity and bathymetric distribution patterns within the TWA. As in the Pacific, the TWA 'lithistid' demosponges dominate deep-water habitats. Deeper taxonomic investigations will undoubtedly contribute to a better comparison between present major 'lithistid' faunas and their fossil record in the Mesozoic.

9.
Zootaxa ; 4878(2): zootaxa.4878.2.2, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33311153

RESUMO

This research presents three new species of carnivorous sponges from the family Cladorhizidae from the Great Australian Bight, South Australia. This research also shows a clear separation within the species currently known as Cladorhiza into those with an arbuscular or tree-like morphology from the Atlantic, to those of differing morphologies and propose three new genera, i.e. Bathytentacular gen. nov., Abyssosdiskos gen. nov. and Nullarbora gen. nov. and the resurrection of an old genus Axoniderma. nov. The three new species described in this paper are Nullarbora heptaxia sp. nov., Abyssocladia oxyasters sp. nov. and Lycopodina hystrix sp. nov. A new species in the family Guitarridae, Guitarra davidconryi sp. nov., a family closely related to the carnivorous sponges is also described in this paper. These new species are the first recorded carnivorous species from South Australia and increase the number of species recorded from around Australia to 25.


Assuntos
Carnivoridade , Poríferos , Animais , Austrália
10.
Zootaxa ; 4774(1): zootaxa.4774.1.1, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33055596

RESUMO

This research presents 17 new species of carnivorous sponges from the family Cladorhizidae sampled at bathyal and abyssal depths off the east coast of Australia during the RV Investigator 2017 Abyss Expedition. The species are comprised of six genera: Abyssocladia escheri sp. nov., A. annae sp. nov., A. gliscofila sp. nov., Asbestopluma (Asbestopluma) maxisigma sp. nov., Cladorhiza australis nov. sp., C. poritea sp. nov., C. investigator sp. nov., C. moniqueae sp. nov., C. pentaeiros sp. nov., Chondrocladia (Chondrocladia) freycinetensis sp. nov., Ch. (Ch.) callistemonex sp. nov., Ch. (Ch.) zygainadentonis sp. nov., Lycopodina nikitawimandi sp. nov., L. helios sp. nov., L. cassida sp. nov., L. brochidodroma sp. nov. and Euchelipluma claudochela sp. nov. Only three carnivorous species, A. desmophora, As. (As.) desmophora and C. (Meliiderma) tasmaniensis, have been recorded from Australia previously. This expedition also recovered two described species commonly recorded from the Southern Hemisphere Ch. (Ch.) clavata and L. calyx. This paper also redescribes two species from the South Pacific i.e. C. mirabilis and C. similis.


Assuntos
Carnivoridade , Poríferos , Animais , Austrália , Expedições
11.
Beilstein J Org Chem ; 16: 1596-1605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704326

RESUMO

Investigations on the biochemical relationship between Doriprismatica stellata (Chromodorididae, Doridoidea) nudibranchs, their egg ribbons, and the associated dietary sponge Spongia cf. agaricina (Demospongiae, Porifera) led to the isolation of the structurally new scalarane-type sesterterpene 12-deacetoxy-4-demethyl-11,24-diacetoxy-3,4-methylenedeoxoscalarin, with an unprecedented position of the cyclopropane ring annelated to the ring A. Unlike other scalaranes, which are most often functionalized at C-12 of ring C, it bears two acetoxy groups at C-11 and C-24 instead. The compound was present in all three samples, supporting the dietary relationship between chromodorid nudibranchs of the genus Doriprismatica and scalarane-containing dictyoceratid sponges of the Spongiidae family. The results also indicate that D. stellata passes the scalarane metabolite on to its egg ribbons, most likely for protective purposes. The scalarane showed antibacterial activity against the Gram-positive bacteria Arthrobacter crystallopoietes (DSM 20117) and Bacillus megaterium (DSM 32).

12.
Front Microbiol ; 11: 716, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390977

RESUMO

In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.

13.
Mar Drugs ; 17(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658704

RESUMO

Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.


Assuntos
Organismos Aquáticos/química , Quitina/química , Portadores de Fármacos/química , Poríferos/química , Tirosina/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Quitina/isolamento & purificação , Citoesqueleto/química , Compostos de Decametônio/administração & dosagem , Portadores de Fármacos/isolamento & purificação , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/isolamento & purificação , Isoxazóis/química , Isoxazóis/isolamento & purificação , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Poríferos/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Tirosina/química , Tirosina/isolamento & purificação
14.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618840

RESUMO

Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/química , Produtos Biológicos/química , Poríferos/química , Animais , Curativos Biológicos , Quitina/química , Humanos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
15.
Genome ; 62(1): 1-10, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30557098

RESUMO

African sponges, particularly freshwater sponges, are understudied relative to demosponges in most other geographical regions. Freshwater sponges (Spongillida) likely share a common ancestor; however, their evolutionary history, particularly during their radiation into endemic and allegedly cosmopolitan groups, is unclear. Freshwater sponges of at least 58 species of 17 genera and four families are described from Central and Eastern Africa, but the diversity is underestimated due to limited distinguishable morphological features. The discovery of additional cryptic species is very likely with the use of molecular techniques such as DNA barcoding. The Royal Museum of Central Africa (MRAC, Tervuren, Belgium) hosts one of the largest collections of (Central) African freshwater sponge type material. Type specimens in theory constitute ideal targets for molecular taxonomy; however, the success is frequently hampered by DNA degradation and deamination, which are a consequence of suboptimal preservation techniques. Therefore, we genotyped African demosponge holotype material of the MRAC with specific short primers suitable for degenerated tissue and compare the results with the current, morphology-based classification. Our results demonstrate the utility of minimalistic barcodes for identification of sponges, potentially enabling efficient identification of individuals in taxonomic or metabarcoding studies, and highlight inconsistencies in the current freshwater sponge classification.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Filogenia , Poríferos/genética , Animais , Código de Barras de DNA Taxonômico/normas , Poríferos/classificação
16.
Zootaxa ; 4500(1): 43-58, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30486076

RESUMO

Sponges of the order Haplosclerida are often abundant and characteristic components of Indo-Pacific reefs, but are often misidentified, because of the lack of clear distinctive morphological characters. Neopetrosia exigua is an example of a haplosclerid sponge that is very common in Indonesian shallow coral reef environments but bears several different names. In the present study we investigated type material of several Indo-Pacific Neopetrosia species with a similar morphology and examined freshly collected specimen materials including specimens that are deposited at several institutions. In addition, we used molecular phylogenetic methods for assisting the morphological examinations. We conclude that the true identity of Neopetrosia exigua should be Neopetrosia chaliniformis. Likewise, N. exigua and N. pacifica should be considered as junior synonyms of N. chaliniformis. In conclusion, we advocate that molecular barcoding could significantly aid on sponge species' delimitation that possess limited morphological characters.


Assuntos
Recifes de Corais , Filogenia , Animais , Indonésia , Poríferos , Água
17.
PeerJ ; 6: e5586, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280018

RESUMO

Correct identification and classification of sponges is challenging due to ambiguous or misleading morphological features. A particular case is a blue keratose sponge occasionally referred to as the "Blue Photo Sponge" among aquarists, which appears frequently (and in several cases unintended) in private aquaria. This spicule-less species, occasionally specified as Collospongia auris Bergquist, Cambie & Kernan 1990, not only displays a high phenotypic plasticity in growth form and colour, it also proliferates in aquacultures under standard conditions unlike most other sponges. Therefore, this species is regarded as a pest for most aquarists. In turn, the ease of cultivation and propagation in aquacultures qualifies this species as a model organism for a wide array of scientific applications. For these purposes, correct identification and classification are indispensable. We reconstructed ribosomal gene trees and determined this species as Lendenfeldia chondrodes (De Laubenfels, 1954) (Phyllospongiinae), distant to Collospongia auris, and corroborated by skeletal features. Additionally, the resulting phylogeny corroborated major shortcomings of the current Phyllospongiinae classification-its consequences are discussed.

18.
BMC Evol Biol ; 18(1): 114, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021516

RESUMO

BACKGROUND: Approximately 80% of all described extant sponge species belong to the class Demospongiae. Yet, despite their diversity and importance, accurate divergence times are still unknown for most demosponge clades. The estimation of demosponge divergence time is key to answering fundamental questions on the origin of Demospongiae, their diversification and historical biogeography. Molecular sequence data alone is not informative on an absolute time scale, and therefore needs to be "calibrated" with additional data such as fossils. Here, we calibrate the molecular data with the fossilized birth-death model, which compared to strict node dating, allows for the inclusion of young and old fossils in the analysis of divergence time. We use desma-bearing sponges, a diverse group of demosponges that form rigid skeletons and have a rich and continuous fossil record dating back to the Cambrian (~500 Ma), to date the demosponge radiation and constrain the timing of key evolutionary events, like the transition from marine to freshwater habitats. To infer a dated phylogeny of Demospongiae we assembled the mitochondrial genomes of six desma-bearing demosponges from reduced-representation genomic libraries. The total dataset included 33 complete demosponge mitochondrial genomes and 30 fossils. RESULTS: Our study supports a Neoproterozoic origin of Demospongiae. Novel age estimates for the split of freshwater and marine sponges dating back to the Carboniferous and the previously assumed recent (~18 Ma) diversification of freshwater sponges is supported. Moreover, we provide detailed age estimates for a possible diversification of Tetractinellidae (~315 Ma), the Astrophorina (~240 Ma), the Spirophorina (~120 Ma) and the family Corallistidae (~188 Ma) all of which are considered as key groups for dating the Demospongiae due to their extraordinary rich and continuous fossil history. CONCLUSION: This study provides novel insights into the evolution of Demospongiae. Observed discrepancies of our dated phylogeny with their putative first fossil appearance dates are discussed for selected sponge groups. For instance, a Carboniferous origin of the order Tetractinellida seems to be too late, compared to their first appearance in the fossil record in the Middle Cambrian. This would imply that Paleozoic spicule forms are not homologous to post-Paleozoic forms.


Assuntos
Fósseis , Genoma Mitocondrial , Modelos Biológicos , Poríferos/genética , Animais , Organismos Aquáticos/genética , Teorema de Bayes , Calibragem , Evolução Molecular , Água Doce , Filogenia , Fatores de Tempo
19.
PeerJ ; 6: e4596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761036

RESUMO

Marine caves possess unique biocoenotic and ecological characteristics. Sessile benthic species such as sponges associated with cave habitats typically show a marked zonation from the cave entrance towards the end of the cave. We describe three semi-submerged karstic caves of 50 to 83 m length and 936 to 2,291 m3 volume from the poorly explored cavernicolous fauna of North-East Bulgaria. We surveyed sponge diversity and spatial variability. Eight demosponge species were identified based on morphological and molecular data, of which six are known from the adjacent open sea waters of the Black Sea. Two species, Protosuberites denhartogi van Soest & de Kluijver, 2003 and Halichondria bowerbanki Burton, 1930, are reported from the Black Sea for the first time. The spatial sponge distribution inside the caves is in general similar, but shows some differences in species composition and distribution depending on cave relief and hydrodynamics. The species composition of sponges of Bulgarian caves is found to be different from Crimean caves. An updated checklist of the Black Sea sponges is provided.

20.
Zootaxa ; 4410(2): 379-386, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29690149

RESUMO

A new species of Raspailia (Raspaxilla) frondosa sp. nov. is described from the deep seamounts of the Norfolk and New Caledonia Ridges. The morphology of the species resembles that of a frond or a fern, and its unique highly compressed axial skeleton of interlaced spongin fibres without spicules in combination with a radial extra axial skeleton of a perpendicular palisade of spicules, differentiate it from all other species of the subgenus. This species is compared morphologically to all 18 other valid species described in Raspailia (Raspaxilla).


Assuntos
Poríferos , Animais , Nova Caledônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...