Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 16(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38730718

RESUMO

Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell-cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38115607

RESUMO

Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.

4.
MAbs ; 15(1): 2281763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38031350

RESUMO

Neutrophil extracellular traps (NETs) contribute to the pathophysiology of multiple inflammatory and autoimmune diseases. Targeting the NETosis pathway has demonstrated significant therapeutic potency in various disease models. Here, we describe a first-in-class monoclonal antibody (CIT-013) with high affinity for citrullinated histones H2A and H4, which inhibits NETosis and reduces tissue NET burden in vivo with significant anti-inflammatory consequences. We provide a detailed understanding of the epitope selectivity of CIT-013. Detection of CIT-013 epitopes in rheumatoid arthritis (RA) synovium provides evidence that RA is an autoimmune disease with excessive citrullinated NETs that can be targeted by CIT-013. We show that CIT-013 acts upon the final stage of NETosis, binding to its chromatin epitopes when plasma membrane integrity is compromised to prevent NET release. Bivalency of CIT-013 is necessary for NETosis inhibition. In addition, we show that CIT-013 binding to NETs and netting neutrophils enhance their phagocytosis by macrophages in an Fc-dependent manner. This is confirmed using a murine neutrophilic airway inflammation model where a mouse variant of CIT-013 reduced tissue NET burden with significant anti-inflammatory consequences. CIT-013's therapeutic activity provides new insights for the development of NET antagonists and indicates the importance of a new emerging therapy for NET-driven diseases with unmet therapeutic needs.


Assuntos
Anticorpos Monoclonais , Artrite Reumatoide , Doenças Autoimunes , Armadilhas Extracelulares , Animais , Camundongos , Anti-Inflamatórios , Anticorpos Monoclonais/farmacologia , Artrite Reumatoide/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Epitopos/metabolismo , Histonas/metabolismo , Neutrófilos , Anticorpos Antiproteína Citrulinada/farmacologia
5.
J Med Virol ; 95(10): e29122, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787583

RESUMO

Despite recent advances in prophylactic vaccination, SARS-CoV-2 infections continue to cause significant morbidity. A better understanding of immune response differences between vaccinated individuals with and without later SARS-CoV-2 breakthrough infection is urgently needed. CoV-ADAPT is a prospective long-term study comparing humoral (anti-spike-RBD-IgG, neutralization capacity, avidity) and cellular (spike-induced T-cell interferon-γ [IFN-γ] release) immune responses in individuals vaccinated against SARS-CoV-2 at four different time points (three before and one after third vaccination). In this cohort study, 62 fully vaccinated individuals presented with SARS-CoV-2 breakthrough infections vs 151 without infection 3-7 months following third vaccination. Breakthrough infections significantly increased anti-spike-RBD-IgG (p < 0.01), but not spike-directed T-cell IFN-γ release (TC) or antibody avidity. Despite comparable surrogate neutralization indices, the functional neutralization capacity against SARS-CoV-2-assessed via a tissue culture-based assay-was significantly higher following breakthrough vs no breakthrough infection. Anti-spike-RBD-IgG and antibody avidity decreased with age (p < 0.01) and females showed higher anti-spike-RBD-IgG (p < 0.01), and a tendency towards higher antibody avidity (p = 0.051). The association between humoral and cellular immune responses previously reported at various time points was lost in subjects after breakthrough infections (p = 0.807). Finally, a machine-learning approach based on our large immunological dataset (a total of 49 variables) from different time points was unable to predict breakthrough infections (area under the curve: 0.55). In conclusion, distinct differences in humoral vs cellular immune responses in fully vaccinated individuals with or without breakthrough infection could be demonstrated. Breakthrough infections predominantly drive the humoral response without boosting the cellular component. Breakthrough infections could not be predicted based on immunological data, which indicates a superior role of environmental factors (e.g., virus exposure) in individualized risk assessment.


Assuntos
COVID-19 , Feminino , Humanos , SARS-CoV-2 , Infecções Irruptivas , Estudos de Coortes , Estudos Prospectivos , Interferon gama , Imunidade Celular , Imunoglobulina G , Anticorpos Antivirais , Vacinação , Imunidade Humoral
7.
J Dtsch Dermatol Ges ; 21(4): 374-380, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37070509

RESUMO

Neutrophilic dermatoses are a group of clinically heterogeneous diseases characterized by infiltration of neutrophils in the affected tissue. Skin symptoms comprise a spectrum of wheals, papules, plaques, pustules, nodules and ulcerations often in combination with systemic symptoms. Although the pathogenesis of these diseases has not yet been elucidated in depth, broad pathophysiological and clinical overlaps exist with autoinflammatory syndromes. Additionally, recent years have shown the relevance of the signaling pathways of TNF-α, IL-1, IL-12/23 and IL-17 in neutrophilic dermatoses. In this review, we present four selected neutrophilic dermatoses, namely pyoderma gangraenosum, Sweet syndrome, generalized pustular psoriasis and Schnitzler syndrome, discuss pathophysiological aspects and specifically address novel therapeutic options derived from the most recent pathophysiological findings.


Assuntos
Dermatite , Psoríase , Síndrome de Schnitzler , Dermatopatias Vesiculobolhosas , Síndrome de Sweet , Humanos , Dermatite/patologia , Síndrome de Sweet/diagnóstico , Síndrome de Sweet/tratamento farmacológico , Síndrome de Sweet/patologia , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Dermatopatias Vesiculobolhosas/patologia , Síndrome de Schnitzler/patologia , Neutrófilos/patologia
9.
Biophys Rep (N Y) ; 3(1): 100091, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36619899

RESUMO

Neutrophils are key players of the immune system and possess an arsenal of effector functions, including the ability to form and expel neutrophil extracellular traps (NETs) in a process termed NETosis. During NETosis, the nuclear DNA/chromatin expands until it fills the whole cell and is released into the extracellular space. NETs are composed of DNA decorated with histones, proteins, or peptides, and NETosis is implicated in many diseases. Resolving the structure of the nucleus in great detail is essential to understand the underlying processes, but so far, superresolution methods have not been applied. Here, we developed an expansion-microscopy-based method and determined the spatial distribution of chromatin/DNA, histone H1, and nucleophosmin with an over fourfold improved resolution (<40-50 nm) and increased information content. It allowed us to identify the punctate localization of nucleophosmin in the nucleus and histone-rich domains in NETotic cells with a size of 54-66 nm. The technique could also be applied to components of the nuclear envelope (lamins B1 and B2) and myeloperoxidase, providing a complete picture of nuclear composition and structure. In conclusion, expansion microscopy enables superresolved imaging of the highly dynamic structure of nuclei in immune cells.

10.
Small ; 19(14): e2206856, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36610045

RESUMO

Biochemical processes are fast and occur on small-length scales, which makes them difficult to measure. Optical nanosensors based on single-wall carbon nanotubes (SWCNTs) are able to capture such dynamics. They fluoresce in the near-infrared (NIR, 850-1700 nm) tissue transparency window and the emission wavelength depends on their chirality. However, NIR imaging requires specialized indium gallium arsenide (InGaAs) cameras with a typically low resolution because the quantum yield of normal Si-based cameras rapidly decreases in the NIR. Here, an efficient one-step phase separation approach to isolate monochiral (6,4)-SWCNTs (880 nm emission) from mixed SWCNT samples is developed. It enables imaging them in the NIR with high-resolution standard Si-based cameras (>50× more pixels). (6,4)-SWCNTs modified with (GT)10 -ssDNA become highly sensitive to the important neurotransmitter dopamine. These sensors are 1.7× brighter and 7.5× more sensitive and allow fast imaging (<50 ms). They enable high-resolution imaging of dopamine release from cells. Thus, the assembly of biosensors from (6,4)-SWCNTs combines the advantages of nanosensors working in the NIR with the sensitivity of (Si-based) cameras and enables broad usage of these nanomaterials.

11.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362165

RESUMO

Ingenol mebutate (IM) is highly effective in the treatment of human papillomavirus (HPV)-induced anogenital warts (AGW) leading to fast ablation within hours. However, the exact mode of action is still largely unknown. We performed dermoscopy, in vivo confocal microscopy (CLM), histology, immunohistochemistry, and immunofluorescence to gain insights in mechanisms of IM treatment in AGW. In addition, we used in vitro assays (ELISA, HPV-transfection models) to further investigate in vivo findings. IM treatment leads to a strong recruitment of neutrophils with thrombosis of small skin vessels within 8 h, in a sense of immunothrombosis. In vivo and in vitro analyses showed that IM supports a prothrombotic environment by endothelial cell activation and von Willebrand factor (VWF) secretion, in addition to induction of neutrophil extracellular traps (NETosis). IM superinduces CXCL8/IL-8 expression in HPV-E6/E7 transfected HaCaT cells when compared to non-infected keratinocytes. Rapid ablation of warts after IM treatment can be well explained by the observed immunothrombosis. This new mechanism has so far only been observed in HPV-induced lesions and is completely different from the mechanisms we see in the treatment of transformed keratinocytes in actinic keratosis. Our initial findings indicate an HPV-specific effect, which could be also of interest for the treatment of other HPV-induced lesions. Larger studies are now needed to further investigate the potential of IM in different HPV tumors.


Assuntos
Condiloma Acuminado , Diterpenos , Ceratose Actínica , Infecções por Papillomavirus , Anormalidades da Pele , Verrugas , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Condiloma Acuminado/tratamento farmacológico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Ceratose Actínica/tratamento farmacológico , Papillomaviridae , Necrose
12.
Front Immunol ; 13: 953129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979369

RESUMO

Platelets are well characterized for their indispensable role in primary hemostasis to control hemorrhage. Research over the past years has provided a substantial body of evidence demonstrating that platelets also participate in host innate immunity. The surface expression of pattern recognition receptors, such as TLR2 and TLR4, provides platelets with the ability to sense bacterial products in their environment. Platelet α-granules contain microbicidal proteins, chemokines and growth factors, which upon release may directly engage pathogens and/or contribute to inflammatory signaling. Additionally, platelet interactions with neutrophils enhance neutrophil activation and are often crucial to induce a sufficient immune response. In particular, platelets can activate neutrophils to form neutrophil extracellular traps (NETs). This specific neutrophil effector function is characterized by neutrophils expelling chromatin fibres decorated with histones and antimicrobial proteins into the extracellular space where they serve to trap and kill pathogens. Until now, the mechanisms and signaling pathways between platelets and neutrophils inducing NET formation are still not fully characterized. NETs were also detected in thrombotic lesions in several disease backgrounds, pointing towards a role as an interface between neutrophils, platelets and thrombosis, also known as immunothrombosis. The negatively charged DNA within NETs provides a procoagulant surface, and in particular NET-derived proteins may directly activate platelets. In light of the current COVID-19 pandemic, the topic of immunothrombosis has become more relevant than ever, as a majority of COVID-19 patients display thrombi in the lung capillaries and other vascular beds. Furthermore, NETs can be found in the lung and other tissues and are associated with an increased mortality. Here, virus infiltration may lead to a cytokine storm that potently activates neutrophils and leads to massive neutrophil infiltration into the lung and NET formation. The resulting NETs presumably activate platelets and coagulation factors, further contributing to the subsequent emergence of microthrombi in pulmonary capillaries. In this review, we will discuss the interplay between platelets and NETs and the potential of this alliance to influence the course of inflammatory diseases. A better understanding of the underlying molecular mechanisms and the identification of treatment targets is of utmost importance to increase patients' survival and improve the clinical outcome.


Assuntos
COVID-19 , Armadilhas Extracelulares , Trombose , Humanos , Inflamação/metabolismo , Pandemias , Trombose/metabolismo
14.
Viruses ; 14(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215912

RESUMO

Anti-SARS-CoV-2-specific serological responses are a topic of ongoing evaluation studies. In the study presented here, the anti-SARS-CoV-2 surrogate neutralization assays by TECOmedical and DiaPROPH -Med were assessed in a head-to-head comparison with serum samples of individuals after vaccination as well as after previous infection with SARS-CoV-2. In case of discordant results, a cell culture-based neutralization assay was applied as a reference standard. The TECOmedical assay showed sensitivity and specificity of 100% and 61.3%, respectively, the DiaPROPH-Med assay 95.0% and 48.4%, respectively. As a side finding of the study, differences in the likelihood of expressing neutralizing antibodies could be shown for different exposition types. So, 60 of 81 (74.07%) of the samples with only one vaccination showed an expression of neutralizing antibodies in contrast to 85.71% (60 of 70 samples) of the samples with two vaccinations and 100% (40 of 40) of the samples from previously infected individuals. In conclusion, the both assays showed results similar to previous assessments. While the measured diagnostic accuracy of both assays requires further technical improvement of this diagnostic approach, as the calculated specificity values of 61.3% and 48.4%, respectively, appear acceptable for diagnostic use only in populations with a high percentage of positive subjects, but not at expectedly low positivity rates.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/epidemiologia , Testes de Neutralização/métodos , Testes de Neutralização/normas , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Humanos , Estudos Longitudinais , Padrões de Referência , Sensibilidade e Especificidade
15.
Healthcare (Basel) ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35206842

RESUMO

The measures taken to cope with the COVID-19 pandemic by governments worldwide have vast consequences on all areas of life. To assess the impact of the COVID-19 pandemic on long-term career development, we evaluated the work-family balance of medical doctors at nine German university clinics. The results indicate a severely disturbed work-family balance, which was mostly due to insufficient childcare, based on restrictions in school operations and childcare. Despite the newly created emergency childcare options, aiming to ensure the functioning of the "systematically important" professional groups, medical doctors feel that they are not sufficiently supported by the measures taken by local governments. Women, in particular, see their professional development at risk. Our results underline that proper and flexible childcare is essential for the career advancement of female medical doctors and is particularly important in times of crises such as the current COVID-19 pandemic. At university medicine clinics, increased work time flexibility and optimized schooling and childcare are needed to promote the career development of female as well as male medical doctors in the early stage of their careers.

16.
Allergy ; 77(8): 2381-2392, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35124800

RESUMO

BACKGROUND: Homologous and heterologous SARS-CoV-2 vaccinations yield different spike protein-directed humoral and cellular immune responses. This study aimed to explore their currently unknown interdependencies. METHODS: COV-ADAPT is a prospective, observational cohort study of 417 healthcare workers who received vaccination with homologous ChAdOx1 nCoV-19, homologous BNT162b2 or with heterologous ChAdOx1 nCoV-19/BNT162b2. We assessed humoral (anti-spike-RBD-IgG, neutralizing antibodies, and avidity) and cellular (spike-induced T-cell interferon-γ release) immune responses in blood samples up to 2 weeks before (T1) and 2-12 weeks following secondary immunization (T2). RESULTS: Initial vaccination with ChAdOx1 nCoV-19 resulted in lower anti-spike-RBD-IgG compared with BNT162b2 (70 ± 114 vs. 226 ± 279 BAU/ml, p < .01) at T1. Booster vaccination with BNT162b2 proved superior to ChAdOx1 nCoV-19 at T2 (anti-spike-RBD-IgG: ChAdOx1 nCoV-19/BNT162b2 2387 ± 1627 and homologous BNT162b2 3202 ± 2184 vs. homologous ChAdOx1 nCoV-19 413 ± 461 BAU/ml, both p < .001; spike-induced T-cell interferon-γ release: ChAdOx1 nCoV-19/BNT162b2 5069 ± 6733 and homologous BNT162b2 4880 ± 7570 vs. homologous ChAdOx1 nCoV-19 1152 ± 2243 mIU/ml, both p < .001). No significant differences were detected between BNT162b2-boostered groups at T2. For ChAdOx1 nCoV-19, no booster effect on T-cell activation could be observed. We found associations between anti-spike-RBD-IgG levels (ChAdOx1 nCoV-19/BNT162b2 and homologous BNT162b2) and T-cell responses (homologous ChAdOx1 nCoV-19 and ChAdOx1 nCoV-19/BNT162b2) from T1 to T2. Additionally, anti-spike-RBD-IgG and T-cell response were linked at both time points (all groups combined). All regimes yielded neutralizing antibodies and increased antibody avidity at T2. CONCLUSIONS: Interdependencies between humoral and cellular immune responses differ between common SARS-CoV-2 vaccination regimes. T-cell activation is unlikely to compensate for poor humoral responses.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Imunidade Humoral , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , ChAdOx1 nCoV-19 , Humanos , Imunoglobulina G , Interferon gama , Estudos Prospectivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
17.
J Dtsch Dermatol Ges ; 19(7): 957-958, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34288461
18.
J Allergy Clin Immunol ; 147(2): 439-455, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32560971

RESUMO

Research into the pathophysiology of psoriasis remains challenging, because this disease does not occur naturally in laboratory animals. However, specific aspects of its complex immune-pathology can be illuminated through transgenic, knockout, xenotransplantation, immunological reconstitution, drug-induced, or spontaneous mutation models in rodents. Although some of these approaches have already been pursued for more than 5 decades and even more models have been described in recent times, they have surprisingly not yet been systematically validated. As a consequence, researchers regularly examine specific aspects that only partially reflect the complex overall picture of the human disease. Nonetheless, animal models are of great utility to investigate inflammatory mediators, the communication between cells of the innate and the adaptive immune systems, the role of resident cells as well as new therapies. Of note, various manipulations in experimental animals resulted in rather similar phenotypes. These were called "psoriasiform", "psoriasis-like" or even "psoriasis" usually on the basis of some similarities with the human disorder. Xenotransplantation of human skin onto immunocompromised animals can overcome this limitation only in part. In this review, we elucidate approaches for the generation of animal models of psoriasis and assess their strengths and limitations with a certain focus on more recently developed models.


Assuntos
Modelos Animais de Doenças , Psoríase , Animais , Humanos
20.
J Dtsch Dermatol Ges ; 18(8): 795-807, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32761894

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has far-reaching direct and indirect medical consequences. These include both the course and treatment of diseases. It is becoming increasingly clear that infections with SARS-CoV-2 can cause considerable immunological alterations, which particularly also affect pathogenetically and/or therapeutically relevant factors. Against this background we summarize here the current state of knowledge on the interaction of SARS-CoV-2/COVID-19 with mediators of the acute phase of inflammation (TNF, IL-1, IL-6), type 1 and type 17 immune responses (IL-12, IL-23, IL-17, IL-36), type 2 immune reactions (IL-4, IL-13, IL-5, IL-31, IgE), B-cell immunity, checkpoint regulators (PD-1, PD-L1, CTLA4), and orally druggable signaling pathways (JAK, PDE4, calcineurin). In addition, we discuss in this context non-specific immune modulation by glucocorticosteroids, methotrexate, antimalarial drugs, azathioprine, dapsone, mycophenolate mofetil and fumaric acid esters, as well as neutrophil granulocyte-mediated innate immune mechanisms. From these recent findings we derive possible implications for the therapeutic modulation of said immunological mechanisms in connection with SARS-CoV-2/COVID-19. Although, of course, the greatest care should be taken with patients with immunologically mediated diseases or immunomodulating therapies, it appears that many treatments can also be carried out during the COVID-19 pandemic; some even appear to alleviate COVID-19.


Assuntos
COVID-19/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , COVID-19/terapia , Síndrome da Liberação de Citocina/imunologia , Humanos , Imunoterapia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...