Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 29(9): 1799-810, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25814029

RESUMO

The naturally occurring oncolytic virus (OV), reovirus, replicates in cancer cells causing direct cytotoxicity, and can activate innate and adaptive immune responses to facilitate tumour clearance. Reovirus is safe, well tolerated and currently in clinical testing for the treatment of multiple myeloma, in combination with dexamethasone/carfilzomib. Activation of natural killer (NK) cells has been observed after systemic delivery of reovirus to cancer patients; however, the ability of OV to potentiate NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) is unexplored. This study elucidates the potential of oncolytic reovirus for the treatment of chronic lymphocytic leukaemia (CLL), both as a direct cytotoxic agent and as an immunomodulator. We demonstrate that reovirus: (i) is directly cytotoxic against CLL, which requires replication-competent virus; (ii) phenotypically and functionally activates patient NK cells via a monocyte-derived interferon-α (IFNα)-dependent mechanism; and (iii) enhances ADCC-mediated killing of CLL in combination with anti-CD20 antibodies. Our data provide strong preclinical evidence to support the use of reovirus in combination with anti-CD20 immunotherapy for the treatment of CLL.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Orthoreovirus Mamífero 3/imunologia , Vírus Oncolíticos/imunologia , Rituximab/imunologia , Rituximab/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Feminino , Humanos , Imunidade Inata , Fatores Imunológicos/imunologia , Fatores Imunológicos/uso terapêutico , Imunofenotipagem , Imunoterapia , Células Matadoras Naturais/imunologia , Leucemia Linfocítica Crônica de Células B/diagnóstico , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Replicação Viral
2.
Surgeon ; 12(4): 210-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24502935

RESUMO

BACKGROUND: Despite mankind's many achievements, we are yet to find a cure for cancer. We are now approaching a new era which recognises the promise of harnessing the immune system for anti-cancer therapy. Pathogens have been implicated for decades as potential anti-cancer agents, but implementation into clinical therapy has been plagued with significant drawbacks. Newer 'designer' agents have addressed some of these concerns, in particular, a new breed of oncolytic virus: JX-594, a genetically engineered pox virus, is showing promise. OBJECTIVE: To review the current literature on the use of oncolytic viruses in the treatment of cancer; both by direct oncolysis and stimulation of the immune system. The review will provide a background and historical progression for the surgeon on tumour immunology, and the interplay between oncolytic viruses, immune cells, inflammation on tumourigenesis. METHODS: A literature review was performed using the Medline database. CONCLUSIONS: Viral therapeutics hold promise as a novel treatment modality for the treatment of disseminated malignancy. It provides a multi-pronged attack against tumour burden; direct tumour cell lysis, exposure of tumour-associated antigens (TAA), induction of immune danger signals, and recognition by immune effector cells.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunidade Celular , Neoplasias/terapia , Vírus Oncolíticos/imunologia , Vacinação/métodos , Humanos , Neoplasias/imunologia
3.
Int J Cancer ; 134(5): 1091-101, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23982804

RESUMO

Reovirus is an oncolytic virus (OV), which acts by both direct tumor cell killing and priming of antitumor immunity. A major obstacle for effective oncolytic virotherapy is effective delivery of OV to tumor cells. Ovarian cancer is often confined to the peritoneal cavity and therefore i.p. delivery of reovirus may provide the ideal locoregional delivery, avoiding systemic dissemination. However, ovarian cancer is associated with an accumulation of ascitic fluid, which may interfere with oncolytic viral therapy. Here, we investigated the effect of ascites on reovirus-induced oncolysis against primary ovarian cancer cells and ovarian cancer cell lines. In the absence of ascites, reovirus was cytotoxic against ovarian cancer cells; however, cytotoxicity was abrogated in the presence of ascitic fluid. Neutralizing antibodies (NAb) were identified as the cause of this inhibition. Loading OV onto cell carriers may facilitate virus delivery in the presence of NAb and immune cells which have their own antitumor effector activity are particularly appealing. Immature dendritic cells (iDC), Lymphokine-activated killer (LAK) cells and LAKDC cocultures were tested as potential carriers for reovirus for tumor cell killing and immune cell priming. Reovirus-loaded LAKDC, and to a lesser degree iDC, were able to: (i) protect from NAb and hand-off reovirus for tumor cell killing; (ii) induce a proinflammatory cytokine milieu (IFNÉ£, IL-12, IFNα and TNFα) and (iii) generate an innate and specific antitumor adaptive immune response. Hence, LAKDC pulsed with reovirus represent a novel, clinically practical treatment for ovarian cancer to maximise both direct and innate/adaptive immune-mediated tumor cell killing.


Assuntos
Anticorpos Neutralizantes/imunologia , Ascite/imunologia , Células Dendríticas/imunologia , Células Matadoras Ativadas por Linfocina/imunologia , Terapia Viral Oncolítica , Neoplasias Ovarianas/terapia , Reoviridae/imunologia , Apoptose , Citocinas/biossíntese , Feminino , Humanos , Neoplasias Ovarianas/imunologia , Células Tumorais Cultivadas
4.
Gene Ther ; 20(1): 7-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22170342

RESUMO

Oncolytic viruses (OV) are promising treatments for cancer, with several currently undergoing testing in randomised clinical trials. Measles virus (MV) has not yet been tested in models of human melanoma. This study demonstrates the efficacy of MV against human melanoma. It is increasingly recognised that an essential component of therapy with OV is the recruitment of host antitumour immune responses, both innate and adaptive. MV-mediated melanoma cell death is an inflammatory process, causing the release of inflammatory cytokines including type-1 interferons and the potent danger signal HMGB1. Here, using human in vitro models, we demonstrate that MV enhances innate antitumour activity, and that MV-mediated melanoma cell death is capable of stimulating a melanoma-specific adaptive immune response.


Assuntos
Vírus do Sarampo/imunologia , Melanoma/imunologia , Vírus Oncolíticos/imunologia , Morte Celular/imunologia , Linhagem Celular Tumoral , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Vírus do Sarampo/patogenicidade , Melanoma/patologia , Melanoma/virologia , Vírus Oncolíticos/patogenicidade , Regulação para Cima
5.
Curr Pharm Biotechnol ; 13(9): 1834-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21740364

RESUMO

There has been interest in using viruses to treat cancer for over a century. Recent clinical efforts, driven on by significant preclinical advances, have focussed on the safety of using replication-competent viruses. Recently published clinical trials of six oncolytic viruses (adenovirus, reovirus, measles, herpes simplex, Newcastle disease virus and vaccinia) have added to the accumulating data that endorse oncolytic viruses as a safe and well tolerated treatment approach. Conclusive evidence of efficacy remains to be demonstrated, but randomised clinical trials are now underway.


Assuntos
Neoplasias/terapia , Neoplasias/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Replicação Viral
6.
Br J Cancer ; 106(1): 92-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22134504

RESUMO

BACKGROUND: Tumour cell lysates are an excellent source of many defined and undefined tumour antigens and have been used clinically in immunotherapeutic regimes but with limited success. METHODS: We conjugated Mel888 melanoma lysates to rabbit haemorrhagic disease virus virus-like particles (VLP), which can act as vehicles to deliver multiple tumour epitopes to dendritic cells (DC) to effectively activate antitumour responses. RESULTS: Virus-like particles did not stimulate the phenotypic maturation of DC although, the conjugation of lysates to VLP (VLP-lysate) did overcome lysate-induced suppression of DC activation. Lysate-conjugated VLP enhanced delivery of antigenic proteins to DC, while the co-delivery of VLP-lysates with OK432 resulted in cross-priming of naïve T cells, with expansion of a MART1(+) population of CD8(+) T cells and generation of a specific cytotoxic response against Mel888 tumour cell targets. The responses generated with VLP-lysate and OK432 were superior to those stimulated by unconjugated lysate with OK432. CONCLUSION: Collectively, these results show that the combination of VLP-lysate with OK432 delivered to DC overcomes the suppressive effects of lysates, and enables priming of naïve T cells with superior ability to specifically kill their target tumour cells.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Vírion/imunologia , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Eletroforese em Gel de Poliacrilamida , Humanos , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...