Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 411(6835): 283-7, 2001 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-11357125

RESUMO

Synthetic diamond is formed commercially using high-pressure, chemical-vapour-deposition and shock-wave processes, but these approaches have serious limitations owing to low production volumes and high costs. Recently suggested alternative methods of diamond growth include plasma activation, high pressures, exotic precursors or explosive mixtures, but they suffer from very low yield and are intrinsically limited to small volumes or thin films. Here we report the synthesis of nano- and micro-crystalline diamond-structured carbon, with cubic and hexagonal structure, by extracting silicon from silicon carbide in chlorine-containing gases at ambient pressure and temperatures not exceeding 1,000 degrees C. The presence of hydrogen in the gas mixture leads to a stable conversion of silicon carbide to diamond-structured carbon with an average crystallite size ranging from 5 to 10 nanometres. The linear reaction kinetics allows transformation to any depth, so that the whole silicon carbide sample can be converted to carbon. Nanocrystalline coatings of diamond-structured carbon produced by this route show promising mechanical properties, with hardness values in excess of 50 GPa and Young's moduli up to 800 GPa. Our approach should be applicable to large-scale production of crystalline diamond-structured carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...