Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 57(33): 10692-10696, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29923285

RESUMO

Hyperpolarization techniques are key to extending the capabilities of MRI for the investigation of structural, functional and metabolic processes in vivo. Recent heterogeneous catalyst development has produced high polarization in water using parahydrogen with biologically relevant contrast agents. A heterogeneous ligand-stabilized Rh catalyst is introduced that is capable of achieving 15 N polarization of 12.2±2.7 % by hydrogenation of neurine into a choline derivative. This is the highest 15 N polarization of any parahydrogen method in water to date. Notably, this was performed using a deuterated quaternary amine with an exceptionally long spin-lattice relaxation time (T1 ) of 21.0±0.4 min. These results open the door to the possibility of 15 N in vivo imaging using nontoxic similar model systems because of the biocompatibility of the production media and the stability of the heterogeneous catalyst using parahydrogen-induced polarization (PHIP) as the hyperpolarization method.


Assuntos
Colina/química , Hidrogênio/química , Nanopartículas Metálicas/química , Ródio/química , Água/química , Aminas/química , Catálise , Deutério/química , Hidrogenação , Isótopos de Nitrogênio/química
2.
J Chem Phys ; 147(8): 084706, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28863530

RESUMO

Cd3As2 is a Dirac semimetal that is a 3D analog of graphene. We investigated the local structure and nuclear-spin dynamics in Cd3As2 via 113Cd NMR. The wideline spectrum of the static sample at 295 K is asymmetric and its features are well described by a two-site model with the shielding parameters extracted via Herzfeld-Berger analysis of the magic-angle spinning spectrum. Surprisingly, the 113Cd spin-lattice relaxation time (T1) is extremely long (T1 = 95 s at 295 K), in stark contrast to conductors and the effects of native defects upon semiconductors; but it is similar to that of 13C in graphene (T1 = 110 s). The temperature dependence of 1/T1 revealed a complex bipartite mechanism that included a T2 power-law behavior below 330 K and a thermally activated process above 330 K. In the high-temperature regime, the Arrhenius behavior is consistent with a field-dependent Cd atomic hopping relaxation process. At low temperatures, a T2 behavior consistent with a spin-1/2 Raman-like process provides evidence of a time-dependent spin-rotation magnetic field caused by angular oscillations of internuclear vectors due to lattice vibrations. The observed mechanism does not conform to the conventional two-band model of semimetals, but is instead closer to a mechanism observed in high-Z element ionic solids with large magnetorotation constant [A. J. Vega et al., Phys. Rev. B 74, 214420 (2006)].

3.
Anal Chem ; 89(13): 7190-7194, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28590115

RESUMO

Parahydrogen-induced polarization (PHIP) is a method for enhancing NMR sensitivity. The pairwise addition of parahydrogen in aqueous media by heterogeneous catalysts can lead to applications in chemical and biological systems. Polarization enhancement can be transferred from 1H to 13C for longer lifetimes by using zero field cycling. In this work, water-dispersible N-acetylcysteine- and l-cysteine-stabilized palladium nanoparticles are introduced, and carbon polarizations up to 2 orders of magnitude higher than in previous aqueous heterogeneous PHIP systems are presented. P13C values of 1.2 and 0.2% are achieved for the formation of hydroxyethyl propionate from hydroxyethyl acrylate and ethyl acetate from vinyl acetate, respectively. Both nanoparticle systems are easily synthesized in open air, and TEM indicates an average size of 2.4 ± 0.6 nm for NAC@Pd and 2.5 ± 0.8 nm for LCys@Pd nanoparticles with 40 and 25% ligand coverage determined by thermogravimetric analysis, respectively. As a step toward biological relevance, results are presented for the unprotected amino acid allylglycine upon aqueous hydrogenation of propargylglycine.

4.
ACS Nano ; 9(3): 3265-73, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25688665

RESUMO

Sizing individual nanoparticles and dispersions of nanoparticles provides invaluable information in applications such as nanomaterial synthesis, air and water quality monitoring, virology, and medical diagnostics. Several conventional nanoparticle sizing approaches exist; however, there remains a lack of high-throughput approaches that are suitable for low-resource and field settings, i.e., methods that are cost-effective, portable, and can measure widely varying particle sizes and concentrations. Here we fill this gap using an unconventional approach that combines holographic on-chip microscopy with vapor-condensed nanolens self-assembly inside a cost-effective hand-held device. By using this approach and capturing time-resolved in situ images of the particles, we optimize the nanolens formation process, resulting in significant signal enhancement for the label-free detection and sizing of individual deeply subwavelength particles (smaller than λ/10) over a 30 mm(2) sample field-of-view, with an accuracy of ±11 nm. These time-resolved measurements are significantly more reliable than a single measurement at a given time, which was previously used only for nanoparticle detection without sizing. We experimentally demonstrate the sizing of individual nanoparticles as well as viruses, monodisperse samples, and complex polydisperse mixtures, where the sample concentrations can span ∼5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale. We believe that this high-throughput and label-free nanoparticle sizing platform, together with its cost-effective and hand-held interface, will make highly advanced nanoscopic measurements readily accessible to researchers in developing countries and even to citizen-scientists, and might especially be valuable for environmental and biomedical applications as well as for higher education and training programs.


Assuntos
Microscopia/métodos , Nanopartículas/química , Tamanho da Partícula , Análise Custo-Benefício , Holografia , Microscopia/economia , Microscopia/instrumentação , Poliestirenos/química , Volatilização
5.
Angew Chem Int Ed Engl ; 54(8): 2452-6, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25565403

RESUMO

Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water.


Assuntos
Hidrogênio/química , Nanopartículas/química , Água/química , Catálise , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...