Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122516, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868025

RESUMO

This study represents detailed vibrational analysis of naphthalene bisbenzimidazole (NBBI), perylene bisbenzimidazole (PBBI), and naphthalene imidazole (NI) by vibrational spectroscopic (Fourier Transform Infrared (FT-IR) and Raman), Atomic Force Microscopic (AFM) and quantum chemical studies for the first time. These sorts of compounds provide an opportunity to build potential n-type organic thin film phototransistors which can be used as organic semiconductors. Optimized molecular structures and vibrational wavenumbers of these molecules in their ground states have been calculated by Density Functional Theory (DFT) using B3LYP functional with 6-311++G(d,p) basis set. Finally, theoretical UV-Visible spectrum was predicted and Light Harvesting Efficiencies (LHE) were evaluated. AFM analysis revealed that PBBI has the highest surface roughness thus exhibits an increase in high Jsc value and high conversion efficiency.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121387, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35597162

RESUMO

A photoactive nanohybrid material consisting of pyrocatechol violet, carminic acid and dithizone dyes functionalized silver and neodymium-doped TiO2/ZnO nanostructured materials is reported here, as photoactive blend, for solid-state dye sensitized solar cell. First of all we synthesized metals (silver, neodymium) doped (TiO2) Titanium oxide nanoparticles and their nanocomposites (TiO2/ZnO, M-TiO2/ZnO) using the sol-gel and reflux technique, respectively. The synthesized samples were then characterized by UV-Visible spectroscopy, X-Ray diffraction Analysis (XRD), Scanning electron microscopy (SEM), Energy dispersive X-Ray Analysis (EDX), and Fourier Transform infrared spectroscopy (FTIR). Optical studies were done through UV-Visible spectroscopy and the absorption spectra were used to calculate band gaps. The value of the energy gap for TiO2 nanoparticles is 3.10 eV which was gradually tuned to 2.47 eV after incorporating metals (Ag and Nd) and forming respective nanocomposites. X-Ray diffraction Analysis (XRD) patterns revealed the purity and crystallinity in samples. Scanning electron microscopy (SEM) confirmed the irregular morphology (nanorods and spherical shaped) of ZnO and TiO2 nanostructures respectively. The elemental composition of nanomaterials was successfully investigated using energy dispersive X-ray analysis (EDX). In the absence of any impurities, Fourier Transform infrared spectroscopy (FTIR) was used to identify the functional groups in synthesized material. For device fabrication, a solid-state electrolyte, P3HT, a hole conducting polymer was used. Characterization of fabricated solar cells was done using I-V measurements. Under simulated solar irradiation, the DSSC based on pyrocatechol violet sensitized neodymium doped TiO2/ZnO nanohybrid materials exhibited the best PCE (power conversion efficiency) of 2.38 % and significantly improved Jsc (short circuit current density) of 15.68 mA/cm2 as compared to carminic acid and dithizone in photovoltaic measurements. The improved power conversion efficiency of this device is ascribed to the particle size, increased dye adsorption, increased surface area and thus improved short circuit current density (Jsc).

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 135: 676-82, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25128681

RESUMO

To design sensitizers for dye sensitized solar cells (DSSCs), a series of zinc chlorins with different substituents were synthesized. Novel zinc methyl 3-devinyl-3-hydroxymethyl-20-phenylacetylenylpyropheophorbide-a (ZnChl-1), zinc methyl 20-bromo-3-devinyl-3-hydroxymethylpyropheophorbide-a (ZnChl-2), zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-3), zinc propyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-4) were synthesized and their photovoltaic performances were evaluated in dye-sensitized solar cells. Photoelectrodes with a 7 µm thick nanoporous layer and a 5 µm thick light-scattering layer were used to fabricate dye sensitized solar cells. The best efficiency was obtained with ZnChl-2 sensitizer. ZnChl-2 gave a Jsc of 3.5 mA/cm(2), Voc of 412 mV, FF of 0.56 and an overall conversion efficiency of 0.81 at full sun (1000 W m(-2)).


Assuntos
Clorofila/síntese química , Corantes/química , Energia Solar , Zinco/química , Clorofila/química , Eletroquímica , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
4.
Org Electron ; 13(5): 919-924, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23483783

RESUMO

We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels.

5.
J Fluoresc ; 21(4): 1565-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21279540

RESUMO

Microwave-assisted synthesis, photophysical and electrochemical properties of thermal-stable naphthalene benzimidazoles and naphthalimides are studied in this paper. Microwave-assisted synthesis of naphthalene benzimidazoles provide higher yields than the conventional thermal synthesis. Comparative photophysical properties of naphthalene benzimidazoles and naphthalimides are revealed that conjugation of electron-donating group onto naphthalimide moiety increases fluorescence quantum yields. Fluorophore-solvent interactions are also investigated using Lippert-Mataga equation for naphthalimides and naphthalene benzimidazoles. Thermal stabilities of naphthalene benzimidazoles are better than naphthalimides due to increased aromaticity. The experimental E(LUMO) levels of naphthalene benzimidazoles are found to be between 3.15 and 3.28 eV. Therefore, naphthalene benzimidazole derivatives consisting of anchoring groups are promising materials in organic dye sensitized solar cells.


Assuntos
Benzimidazóis/química , Benzimidazóis/síntese química , Naftalenos/química , Naftalenos/síntese química , Temperatura , Eletroquímica , Fluorescência , Micro-Ondas , Estrutura Molecular , Naftalimidas/síntese química , Naftalimidas/química , Processos Fotoquímicos , Estereoisomerismo
6.
Org Lett ; 12(17): 3812-5, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20704314

RESUMO

Boron-dipyrrin dyes, through rational design, yield promising new materials. With strong electron-donor functionalities and anchoring groups for attachment to nanocrystalline TiO(2), these dyes proved useful as sensitizers in dye-sensitized solar cells. Their applicability in a solid-state electrolyte regime offers additional opportunities for practical applications.

7.
Org Lett ; 10(15): 3299-302, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18588306

RESUMO

A novel distyryl-substituted boradiazaindacene (BODIPY) dye displays interesting properties as a sensitizer in DSSC systems, opening the way to further exploration of structure-efficiency correlation within this class of dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...