Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972953

RESUMO

INTRODUCTION: Machine learning (ML) shows promise for the automation of routine tasks related to the treatment of pediatric low-grade gliomas (pLGG) such as tumor grading, typing, and segmentation. Moreover, it has been shown that ML can identify crucial information from medical images that is otherwise currently unattainable. For example, ML appears to be capable of preoperatively identifying the underlying genetic status of pLGG. METHODS: In this chapter, we reviewed, to the best of our knowledge, all published works that have used ML techniques for the imaging-based evaluation of pLGGs. Additionally, we aimed to provide some context on what it will take to go from the exploratory studies we reviewed to clinically deployed models. RESULTS: Multiple studies have demonstrated that ML can accurately grade, type, and segment and detect the genetic status of pLGGs. We compared the approaches used between the different studies and observed a high degree of variability throughout the methodologies. Standardization and cooperation between the numerous groups working on these approaches will be key to accelerating the clinical deployment of these models. CONCLUSION: The studies reviewed in this chapter detail the potential for ML techniques to transform the treatment of pLGG. However, there are still challenges that need to be overcome prior to clinical deployment.

2.
Neuro Oncol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743009

RESUMO

Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor group. The natural history, when curative resection is not possible, is one of a chronic disease with periods of tumor stability and episodes of tumor progression. While there is a high overall survival rate, many patients experience significant and potentially lifelong morbidities. The majority of pLGGs have an underlying activation of the RAS/MAPK pathway due to mutational events, leading to the use of molecularly targeted therapies in clinical trials, with recent regulatory approval for the combination of BRAF and MEK inhibition for BRAFV600E mutated pLGG. Despite encouraging activity, tumor regrowth can occur during therapy due to drug resistance, off treatment as tumor recurrence, or as reported in some patients as a rapid rebound growth within 3 months of discontinuing targeted therapy. Definitions of these patterns of regrowth have not been well described in pLGG. For this reason, the International Pediatric Low-Grade Glioma Coalition, a global group of physicians and scientists, formed the Resistance, Rebound, and Recurrence (R3) working group to study resistance, rebound, and recurrence. A modified Delphi approach was undertaken to produce consensus-based definitions and recommendations for regrowth patterns in pLGG with specific reference to targeted therapies.

3.
AJNR Am J Neuroradiol ; 45(5): 549-553, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38176730

RESUMO

This paper will review how artificial intelligence (AI) will play an increasingly important role in pediatric neuroradiology in the future. A safe, transparent, and human-centric AI is needed to tackle the quadruple aim of improved health outcomes, enhanced patient and family experience, reduced costs, and improved well-being of the healthcare team in pediatric neuroradiology. Equity, diversity and inclusion, data safety, and access to care will need to always be considered. In the next decade, AI algorithms are expected to play an increasingly important role in access to care, workflow management, abnormality detection, classification, response prediction, prognostication, report generation, as well as in the patient and family experience in pediatric neuroradiology. Also, AI algorithms will likely play a role in recognizing and flagging rare diseases and in pattern recognition to identify previously unknown disorders. While AI algorithms will play an important role, humans will not only need to be in the loop, but in the center of pediatric neuroimaging. AI development and deployment will need to be closely watched and monitored by experts in the field. Patient and data safety need to be at the forefront, and the risks of a dependency on technology will need to be contained. The applications and implications of AI in pediatric neuroradiology will differ from adult neuroradiology.


Assuntos
Inteligência Artificial , Previsões , Pediatria , Humanos , Criança , Pediatria/métodos , Neuroimagem/métodos , Neurorradiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...