Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sovrem Tekhnologii Med ; 12(6): 21-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796015

RESUMO

The aim of the study was to develop a method for long-term non-invasive recording of the bioelectrical activity induced in isolated neuronal axons irradiated with short infrared (IR) pulses and to study the effect of radiation on the occurrence of action potentials in axons of a neuron culture in vitro. MATERIALS AND METHODS: Hippocampal cells of mouse embryos (E18) were cultured in microfluidic chips made of polydimethylsiloxane and containing microchannels for axonal growth at a distance of up to 800 µm. We studied the electrophysiological activity of a neuronal culture induced by pulses of focused laser radiation in the IR range (1907 and 2095 nm). The electrophysiological activity of the neuronal culture was recorded using a multichannel recording system (Multi Channel Systems, Germany). RESULTS: The developed microfluidic chip and the optical stimulation system combined with the multichannel registration system made it possible to non-invasively record the action potentials caused by pulsed IR radiation in isolated neuronal axons in vitro. The propagation of action potentials in axons was detected using extracellular microelectrodes when the cells were irradiated with a laser at a wavelength of 1907 nm with a radiation power of 0.2-0.5 W for pulses with a duration of 6 ms and 0.5 W for pulses with a duration of 10 ms. It was shown that the radiation power positively correlated with the occurrence rate of axonal response. Moreover, the probability of a response evoked by optical stimulation increased at short optical pulses. In addition, we found that more responses could be evoked by irradiating the neuronal cell culture itself rather than the axon-containing microchannels. CONCLUSION: The developed method makes it possible to isolate the axons growing from cultured neurons into a microfluidic chip, stimulate the neurons with infrared radiation, and non-invasively record the axonal spiking. The proposed approach allowed us to study the characteristics of neuronal responses in cell cultures over a long (weeks) period of time. The method can be used both in fundamental research into the brain signaling system and in the development of a non-invasive neuro-interface.


Assuntos
Axônios , Neurônios , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Lasers , Camundongos , Microeletrodos
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 2): 067601, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23368086

RESUMO

We study multiple scattering of electromagnetic waves by an array of parallel gyrotropic circular rods and show that such an array can exhibit fairly unusual scattering properties and provide, under certain conditions, a giant enhancement of the scattered field. Among the scattering patterns of such an array at its resonant frequencies, the most interesting is the distribution of the total field in the form of a perfect self-similar structure of chessboard type. The scattering characteristics of the array are found to be essentially determined by the resonant properties of its gyrotropic elements and cannot be realized for arrays of nongyrotropic rods. It is expected that the results obtained can lead to a wide variety of practical applications.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 067602, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797522

RESUMO

The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...