Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38337915

RESUMO

Cassava breeding faces obstacles due to late flowering and poor flower and seed set. The acceleration of breeding processes and the reduction in each cycle's duration hinge upon efficiently conducting crosses to yield ample progeny for subsequent cycles. Our primary objective was to identify methods that provide tools for cassava breeding programs, enabling them to consistently and rapidly generate offspring from a wide array of genotypes. In greenhouse trials, we examined the effects of the anti-ethylene silver thiosulfate (STS) and the cytokinin benzyladenine (BA). STS, administered via petiole infusion, and BA, applied as an apical spray, combined with the pruning of young branches, significantly augmented the number of flowers. Controls produced no flowers, whereas treatments with pruning plus either BA or STS alone produced an average maximum of 86 flowers per plant, and the combination of pruning, BA and STS yielded 168 flowers per plant. While STS had its primary effect on flower numbers, BA increased the fraction of female flowers from less than 20% to ≥87%, thus increasing the number of progeny from desired parents. Through field studies, we devised an optimal protocol that maintained acceptable levels of phytodamage ratings while substantially increasing seed production per plant compared to untreated plants. This protocol involves adjusting the dosage and timing of treatments to accommodate genotypic variations. As a result, cassava breeding programs can effectively leverage a diverse range of germplasm to develop cultivars with the desired traits.

2.
Front Plant Sci ; 12: 666266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122486

RESUMO

Cassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding, however, is hindered by the poor development of flowers and a low ratio of female flowers to male flowers. To advance the understanding of the mechanistic factors regulating cassava flowering, combinations of plant growth regulators (PGRs) and pruning treatments were examined for their effectiveness in improving flower production and fruit set in field conditions. Pruning the fork-type branches, which arise at the shoot apex immediately below newly formed inflorescences, stimulated inflorescence and floral development. The anti-ethylene PGR silver thiosulfate (STS) also increased flower abundance. Both pruning and STS increased flower numbers while having minimal influence on sex ratios. In contrast, the cytokinin benzyladenine (BA) feminized flowers without increasing flower abundance. Combining pruning and STS treatments led to an additive increase in flower abundance; with the addition of BA, over 80% of flowers were females. This three-way treatment combination of pruning+STS+BA also led to an increase in fruit number. Transcriptomic analysis of gene expression in tissues of the apical region and developing inflorescence revealed that the enhancement of flower development by STS+BA was accompanied by downregulation of several genes associated with repression of flowering, including homologs of TEMPRANILLO1 (TEM1), GA receptor GID1b, and ABA signaling genes ABI1 and PP2CA. We conclude that flower-enhancing treatments with pruning, STS, and BA create widespread changes in the network of hormone signaling and regulatory factors beyond ethylene and cytokinin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...