Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109468

RESUMO

Imaging using coherent extreme-ultraviolet (EUV) light provides exceptional capabilities for the characterization of the composition and geometry of nanostructures by probing with high spatial resolution and elemental specificity. We present a multi-modal tabletop EUV imaging reflectometer for high-fidelity metrology of nanostructures. The reflectometer is capable of measurements in three distinct modes: intensity reflectometry, scatterometry, and imaging reflectometry, where each mode addresses different nanostructure characterization challenges. We demonstrate the system's unique ability to quantitatively and non-destructively measure the geometry and composition of nanostructures with tens of square microns field of view and sub-nanometer precision. Parameters such as surface and line edge roughness, density, nanostructure linewidth, and profile, as well as depth-resolved composition, can be quantitatively determined. The results highlight the applicability of EUV metrology to address a wide range of semiconductor and materials science challenges.

2.
Nano Lett ; 23(6): 2129-2136, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36881964

RESUMO

Nanostructuring on length scales corresponding to phonon mean free paths provides control over heat flow in semiconductors and makes it possible to engineer their thermal properties. However, the influence of boundaries limits the validity of bulk models, while first-principles calculations are too computationally expensive to model real devices. Here we use extreme ultraviolet beams to study phonon transport dynamics in a 3D nanostructured silicon metalattice with deep nanoscale feature size and observe dramatically reduced thermal conductivity relative to bulk. To explain this behavior, we develop a predictive theory wherein thermal conduction separates into a geometric permeability component and an intrinsic viscous contribution, arising from a new and universal effect of nanoscale confinement on phonon flow. Using experiments and atomistic simulations, we show that our theory applies to a general set of highly confined silicon nanosystems, from metalattices, nanomeshes, porous nanowires, to nanowire networks, of great interest for next-generation energy-efficient devices.

3.
Opt Express ; 30(15): 27967-27982, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236954

RESUMO

Recent advances in structured illumination are enabling a wide range of applications from imaging to metrology, which can benefit from advanced beam characterization techniques. Solving uniquely for the spatial distribution of polarization in a beam typically involves the use of two or more polarization optics, such as a polarizer and a waveplate, which is prohibitive for some wavelengths outside of the visible spectrum. We demonstrate a technique that circumvents the use of a waveplate by exploiting extended Gerchberg-Saxton phase retrieval to extract the phase. The technique enables high-resolution, wavefront-sensing, full-field polarimetry capable of solving for both simple and exotic polarization states, and moreover, is extensible to shorter wavelength light.

4.
Opt Express ; 30(17): 30331-30346, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242139

RESUMO

We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency.

5.
Opt Express ; 29(3): 3342-3358, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770934

RESUMO

Defect inspection on lithographic substrates, masks, reticles, and wafers is an important quality assurance process in semiconductor manufacturing. Coherent Fourier scatterometry (CFS) using laser beams with a Gaussian spatial profile is the standard workhorse routinely used as an in-line inspection tool to achieve high throughput. As the semiconductor industry advances toward shrinking critical dimensions in high volume manufacturing using extreme ultraviolet lithography, new techniques that enable high-sensitivity, high-throughput, and in-line inspection are critically needed. Here we introduce a set of novel defect inspection techniques based on bright-field CFS using coherent beams that carry orbital angular momentum (OAM). One of these techniques, the differential OAM CFS, is particularly unique because it does not rely on referencing to a pre-established database in the case of regularly patterned structures with reflection symmetry. The differential OAM CFS exploits OAM beams with opposite wavefront or phase helicity to provide contrast in the presence of detects. We numerically investigated the performance of these techniques on both amplitude and phase defects and demonstrated their superior advantages-up to an order of magnitude higher in signal-to-noise ratio-over the conventional Gaussian beam CFS. These new techniques will enable increased sensitivity and robustness for in-line nanoscale defect inspection and the concept could also benefit x-ray scattering and scatterometry in general.

6.
Sci Adv ; 7(5)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33571123

RESUMO

Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer. It combines the excellent phase stability of coherent high-harmonic sources, the unique chemical sensitivity of extreme ultraviolet reflectometry, and state-of-the-art ptychography imaging algorithms. This tabletop microscope can nondestructively probe surface topography, layer thicknesses, and interface quality, as well as dopant concentrations and profiles. High-fidelity imaging was achieved by implementing variable-angle ptychographic imaging, by using total variation regularization to mitigate noise and artifacts in the reconstructed image, and by using a high-brightness, high-harmonic source with excellent intensity and wavefront stability. We validate our measurements through multiscale, multimodal imaging to show that this technique has unique advantages compared with other techniques based on electron and scanning probe microscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...