Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 167(2 Suppl): 10-2, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11873484

RESUMO

Conventional metaphase-spread chromosome-aberration-based biodosimetry techniques for radiation dose assessment, although robust, are laborious and time consuming. The molecular cytogenetic laboratory of the Armed Forces Radiobiology Research Institute is developing simple and rapid interphase-based cytological assays that will be applicable to a broad range of radiation exposure scenarios. These assays include analysis of chromosome aberrations (premature chromosome condensation-fluorescence in situ hybridization assay) and mitochondrial DNA mutations (mtDNA4977 deletion assay) using resting human peripheral blood lymphocytes. The dose-effect relationship for radiation-induced aberrations involving chromosome 1 after 24 hours of repair at 37 degrees C in resting human peripheral blood lymphocytes was studied using fluorescence in situ hybridization after chemical induction of premature chromosome condensation as previously explained. In the present study, we examined whether gamma irradiation in the range of 0 to 7.5 Gy induces a dose-dependent increase in aberrations manifested as "excess spots." The number of excess spots per cell, reflecting aberrations involving chromosome 1, increased from 0.035 at 0.5 Gy to 0.236 at 7.5 Gy. This observed dose-effect relationship was fit with a nonlinear power model. This technique may be extended to the study of radiation-induced translocations in interphase cells for retrospective dose reconstruction. With a recently developed in situ polymerase chain reaction method to detect and quantify mtDNA deletion in interphase cells after radiation exposure in cultured human peripheral blood lymphocytes, 90% to 95% of cells are analyzable. We discuss the potential use of the mtDNA deletion assay in biological dosimetry applications. Interphase-based cytological assays may eliminate some inherent problems associated with metaphase-spread-based assays. These problems involve (1) the limited number of analyzable cells containing chromosome aberrations, which is due to various factors including radiation-induced cell death and delay in cell cycle progression into mitosis, and (2) the requirements for radiation cytogenetics expertise and tedious labor to manually score chromosome aberrations.


Assuntos
Linfócitos/efeitos da radiação , Doses de Radiação , Aberrações Cromossômicas , Cromossomos Humanos Par 1 , Humanos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...