Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37174052

RESUMO

The process of epithelial-mesenchymal transition (EMT) involves the phenotypic transformation of cells from epithelial to mesenchymal status. The cells exhibiting EMT contain features of cancer stem cells (CSC), and the dual processes are responsible for progressive cancers. Activation of hypoxia-inducible factors (HIF) is fundamental to the pathogenesis of clear cell renal cell carcinoma (ccRCC), and their role in promoting EMT and CSCs is crucial for ccRCC tumour cell survival, disease progression, and metastatic spread. In this study, we explored the status of HIF genes and their downstream targets, EMT and CSC markers, by immunohistochemistry on in-house accrued ccRCC biopsies and adjacent non-tumorous tissues from patients undergoing partial or radical nephrectomy. In combination, we comprehensively analysed the expression of HIF genes and its downstream EMT and CSC-associated targets relevant to ccRCC by using publicly available datasets, the cancer genome atlas (TCGA) and the clinical proteome tumour analysis consortium (CPTAC). The aim was to search for novel biological prognostic markers that can stratify high-risk patients likely to experience metastatic disease. Using the above two approaches, we report the development of novel gene signatures that may help to identify patients at a high risk of developing metastatic and progressive disease.

2.
Cancer Cell Int ; 22(1): 422, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585738

RESUMO

BACKGROUND: The endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2), through its homeostatic action on certain metalloproteinases, plays a vital role in remodelling extracellular matrix (ECM) to facilitate cancer progression. This study investigated the role of TIMP-2 in an ovarian cancer cell line in which the expression of TIMP-2 was reduced by either siRNA or CRISPR/Cas9. METHODS: OVCAR5 cells were transiently and stably transfected with either single or pooled TIMP-2 siRNAs (T2-KD cells) or by CRISPR/Cas9 under the influence of two distinct guide RNAs (gRNA1 and gRNA2 cell lines). The expression of different genes was analysed at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence (IF) and western blot. Proliferation of cells was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay or staining with Ki67. Cell migration/invasion was determined by xCELLigence. Cell growth in vitro was determined by 3D spheroid cultures and in vivo by a mouse xenograft model. RESULTS: Approximately 70-90% knock down of TIMP-2 expression were confirmed in T2-KD, gRNA1 and gRNA2 OVCAR5 ovarian cancer cells at the protein level. T2-KD, gRNA1 and gRNA2 cells exhibited a significant downregulation of MMP-2 expression, but concurrently a significant upregulation in the expression of membrane bound MMP-14 compared to control and parental cells. Enhanced proliferation and invasion were exhibited in all TIMP-2 knocked down cells but differences in sensitivity to paclitaxel (PTX) treatment were observed, with T2-KD cells and gRNA2 cell line being sensitive, while the gRNA1 cell line was resistant to PTX treatment. In addition, significant differences in the growth of gRNA1 and gRNA2 cell lines were observed in in vitro 3D cultures as well as in an in vivo mouse xenograft model. CONCLUSIONS: Our results suggest that the inhibition of TIMP-2 by siRNA and CRISPR/Cas-9 modulate the expression of MMP-2 and MMP-14 and reprogram ovarian cancer cells to facilitate proliferation and invasion. Distinct disparities in in vitro chemosensitivity and growth in 3D culture, and differences in tumour burden and invasion to proximal organs in a mouse model imply that selective suppression of TIMP-2 expression by siRNA or CRISPR/Cas-9 alters important aspects of metastasis and chemosensitivity in ovarian cancer.

3.
Front Oncol ; 11: 796588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047406

RESUMO

BACKGROUND: The tissue inhibitors of metalloproteinase (TIMPs) and their associated metalloproteinase (MMPs) are essential regulators of tissue homeostasis and are essential for cancer progression. This study analyzed the expression of TIMP-1,-2,-3 and the associated MMPs (MMP-2,-9,-11,-14) in different Stages, Grades and World Health Organization (WHO) classifications of serous ovarian tumors, ascites, ascites-derived cells from chemo-naïve (CN) and relapsed (CR) patients, and in ovarian cancer cell lines. The status of TIMPs and associated MMPs in response to chemotherapy treatment was assessed in cancer cell lines; TCGA data was interrogated to gauge TIMPs and associated MMPs as prognostic and platinum-response indicators. METHODS: The levels of TIMP-1, -2 and -3 were assessed by immunohistochemistry. The mRNA expression of TIMPs and MMPs was quantified by real time PCR (qRT-PCR). The chemosensitivity (IC50 values) to Cisplatin or Paclitaxel in cell lines was evaluated by MTT assay. The levels of TIMPs in ascites and cell lysates were analyzed by an ELISA assay. RESULTS: The expression of TIMP-2 was significantly upregulated in Type 2 compared to Type 1 tumors and normal/benign ovarian tissues. TIMP-3 expression was significantly enhanced in Stage III, Grade 3 and Type 2 tumors compared to normal/benign ovarian tissues. The mRNA expression of MMP-9,-11 and -14 was significantly upregulated in Stage IV compared to normal/benign ovarian tissues. The expression of TIMP-1 was highest, followed by TIMP-2 and then TIMP-3 in CN ascites. At the cellular level, TIMP-2 mRNA expression was significantly higher in CN compared to CR epithelial cells in patients. The expression of TIMP-1 and -2, MMPs and cancer stem cells (CSCs) were upregulated in response to chemotherapy treatments in cancer cell lines. Interrogation of the TCGA dataset suggests shifts in platinum responses in patients consistent with genetic alterations in TIMP-2, -3 and MMP-2, -11 genes in tumors; and decreased overall survival (OS) and progression-free survival (PFS) in patients with altered MMP-14 genes. CONCLUSIONS: TIMPs and related MMPs are differentially expressed in serous ovarian tumors, ascites, ascites-derived cells and ovarian cancer cell lines. Chemotherapy treatment modulates expression of TIMPs and MMPs in association with increased expression of genes related to cancer stem cells.

4.
BMC Cancer ; 20(1): 960, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023532

RESUMO

BACKGROUND: The metzincin family of metalloproteinases and the tissue inhibitors of metalloproteinases (TIMPs) are essential proteins required for biological processes during cancer progression. This study aimed to determine the role of TIMP-2 in ovarian cancer progression and chemoresistance by reducing TIMP-2 expression in vitro in Fallopian tube secretory epithelial (FT282) and ovarian cancer (JHOS2 and OVCAR4) cell lines. METHODS: FT282, JHOS2 and OVCAR4 cells were transiently transfected with either single or pooled TIMP-2 siRNAs. The expression of different genes after TIMP-2 knock down (T2-KD) or in response to chemotherapy was determined at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence. Sensitivity of the cell lines in response to chemotherapy after TIMP-2 knock down was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Ethynyl-2'-deoxyuridine (EdU) assays. Cell invasion in response to TIMP-2 knockdown was determined by xCELLigence. RESULTS: Sixty to 90 % knock down of TIMP-2 expression was confirmed in FT282, OVCAR4 and JHOS2 cell lines at the mRNA and protein levels. TIMP-2 knock down did not change the mRNA expression of TIMP-1 or TIMP-3. However, a significant downregulation of MMP-2 in T2-KD cells occurred at both the protein and activation levels, compared to Control (Cont; scrambled siRNA) and Parental cells (P, transfection reagent only). In contrast, membrane bound MT1-MMP protein levels were significantly upregulated in T2-KD compared to Cont and P cells. T2-KD cells exhibited enhanced proliferation and increased sensitivity to cisplatin and paclitaxel treatments. Enhanced invasion was observed in the T2-KD-JOSH2 and OVCAR4 cells but not in T2-KD-FT282 cells. Treatment with cisplatin or paclitaxel significantly elevated the expression of TIMP-2 in Cont cells but not in T2-KD cells, consistent with significantly elevated expression of chemoresistance and CSC markers and activation of STAT3. Furthermore, a potent inhibitor of STAT3 activation, Momelotinib, suppressed chemotherapy-induced activation of P-STAT3 in OVCAR4 cells with concomitant reductions in the expression of chemoresistance genes and CSC markers. CONCLUSIONS: The above results suggest that TIMP-2 may have a novel role in ovarian cancer proliferation, invasion and chemoresistance.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Fator de Transcrição STAT3/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Transfecção
5.
Semin Cancer Biol ; 53: 265-281, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30317036

RESUMO

Cancer stem cells (CSCs) are a sub-population of tumour cells, which are responsible to drive tumour growth, metastasis and therapy resistance. It has recently been proposed that enhanced glucose metabolism and immune evasion by tumour cells are linked, and are modulated by the changing tumour microenvironment (TME) that creates a competition for nutrient consumption between tumour and different sub-types of cells attracted to the TME. To facilitate efficient nutrient distribution, oncogene-induced inflammatory milieu in the tumours facilitate adaptive metabolic changes in the surrounding non-malignant cells to secrete metabolites that are used as alternative nutrient sources by the tumours to sustain its increasing energy needs for growth and anabolic functions. This scenario also affects CSCs residing at the primary or metastatic niches. This review summarises recent advances in our understanding of the metabolic phenotypes of cancer cells and CSCs and how these processes are affected by the TME. We also discuss how the evolving TME modulates tumour cells and CSCs in cancer progression. Using previously described proteomic and genomic platforms, ovarian cancer cell lines and a mouse xenograft model we highlight the existence of metabolic and immune regulatory signatures in chemoresistant ovarian CSCs, and discuss how these processes may affect recurrence in ovarian tumours. We propose that progress in cancer control and eradication may depend not only on the elimination of highly chemoresistant CSCs, but also in designing novel strategies which would intervene with the tumour-promoting TME factors.


Assuntos
Metabolismo Energético/imunologia , Neoplasias/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral/efeitos dos fármacos
6.
ACS Appl Mater Interfaces ; 10(30): 25174-25185, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29963859

RESUMO

Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.


Assuntos
Nanopartículas , Animais , Antineoplásicos Fitogênicos , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipídeos , Camundongos , Neoplasias Ovarianas , Paclitaxel , Polietilenoglicóis
7.
Int J Mol Sci ; 19(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393911

RESUMO

Approximately sixty per cent of ovarian cancer patients die within the first five years of diagnosis due to recurrence associated with chemoresistance. The metzincin family of metalloproteinases is enzymes involved in matrix remodeling in response to normal physiological changes and diseased states. Recently, there has been a mounting awareness of these proteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), as superb modulators of cellular communication and signaling regulating key biological processes in cancer progression. This review investigates the role of metzincins and their inhibitors in ovarian cancer. We propose that understanding the metzincins and TIMP biology in ovarian cancer may provide valuable insights in combating ovarian cancer progression and chemoresistance-mediated recurrence in patients.


Assuntos
Proteínas ADAMTS/genética , Regulação Neoplásica da Expressão Gênica , Metaloproteinases da Matriz/genética , Recidiva Local de Neoplasia/genética , Neoplasias Ovarianas/genética , Inibidores Teciduais de Metaloproteinases/genética , Proteínas ADAMTS/metabolismo , Antineoplásicos/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Metaloproteinases da Matriz/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Transdução de Sinais , Análise de Sobrevida , Inibidores Teciduais de Metaloproteinases/metabolismo
8.
Sci Rep ; 7: 46312, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406185

RESUMO

Oct4A is a master regulator of self-renewal and pluripotency in embryonic stem cells. It is a well-established marker for cancer stem cell (CSC) in malignancies. Recently, using a loss of function studies, we have demonstrated key roles for Oct4A in tumor cell survival, metastasis and chemoresistance in in vitro and in vivo models of ovarian cancer. In an effort to understand the regulatory role of Oct4A in tumor biology, we employed the use of an ovarian cancer shRNA Oct4A knockdown cell line (HEY Oct4A KD) and a global mass spectrometry (MS)-based proteomic analysis to investigate novel biological targets of Oct4A in HEY samples (cell lysates, secretomes and mouse tumor xenografts). Based on significant differential expression, pathway and protein network analyses, and comprehensive literature search we identified key proteins involved with biologically relevant functions of Oct4A in tumor biology. Across all preparations of HEY Oct4A KD samples significant alterations in protein networks associated with cytoskeleton, extracellular matrix (ECM), proliferation, adhesion, metabolism, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance was observed. This comprehensive proteomics study for the first time presents the Oct4A associated proteome and expands our understanding on the biological role of this stem cell regulator in carcinomas.


Assuntos
Reprogramação Celular/genética , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/deficiência , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Proteoma/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 6: 30061, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27470985

RESUMO

Eighty % of ovarian cancer patients diagnosed at an advanced-stage have complete remission after initial surgery and chemotherapy. However, most patients die within <5 years due to episodes of recurrences resulting from the growth of residual chemoresistant cells. In an effort to identify mechanisms associated with chemoresistance and recurrence, we compared the expression of proteins in ascites-derived tumor cells isolated from advanced-stage ovarian cancer patients obtained at diagnosis (chemonaive, CN) and after chemotherapy treatments (chemoresistant/at recurrence, CR) by using in-depth, high-resolution label-free quantitative proteomic profiling. A total of 2,999 proteins were identified. Using a stringent selection criterion to define only significantly differentially expressed proteins, we report identification of 353 proteins. There were significant differences in proteins encoding for immune surveillance, DNA repair mechanisms, cytoskeleton rearrangement, cell-cell adhesion, cell cycle pathways, cellular transport, and proteins involved with glycine/proline/arginine synthesis in tumor cells isolated from CR relative to CN patients. Pathway analyses revealed enrichment of metabolic pathways, DNA repair mechanisms and energy metabolism pathways in CR tumor cells. In conclusion, this is the first proteomics study to comprehensively analyze ascites-derived tumor cells from CN and CR ovarian cancer patients.


Assuntos
Ascite/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteoma/genética , Carcinoma Epitelial do Ovário , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/genética , Feminino , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas/genética , Recidiva Local de Neoplasia/mortalidade
10.
Front Oncol ; 4: 75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782986

RESUMO

Chemotherapy resistance associated with recurrent disease is the major cause of poor survival of ovarian cancer patients. We have recently demonstrated activation of the JAK2/STAT3 pathway and the enhancement of a cancer stem cell (CSC)-like phenotype in ovarian cancer cells treated in vitro with chemotherapeutic agents. To elucidate further these mechanisms in vivo, we used a two-tiered paclitaxel treatment approach in nude mice inoculated with ovarian cancer cells. In the first approach, we demonstrate that a single intraperitoneal administration of paclitaxel in mice 7 days after subcutaneous transplantation of the HEY ovarian cancer cell line resulted in a significant increase in the expression of CA125, Oct4, and CD117 in mice xenografts compared to control mice xenografts which did not receive paclitaxel. In the second approach, mice were administered once weekly with paclitaxel and/or a daily dose of the JAK2-specific inhibitor, CYT387, over 4 weeks. Mice receiving paclitaxel only demonstrated a significant decrease in tumor volume compared to control mice. At the molecular level, mouse tumors remaining after paclitaxel administration showed a significant increase in the expression of Oct4 and CD117 coinciding with a significant activation of the JAK2/STAT3 pathway compared to control tumors. The addition of CYT387 with paclitaxel resulted in the suppression of JAK2/STAT3 activation and abrogation of Oct4 and CD117 expression in mouse xenografts. This coincided with significantly smaller tumors in mice administered CYT387 in addition to paclitaxel, compared to the control group and the group of mice receiving paclitaxel only. These data suggest that the systemic administration of paclitaxel enhances Oct4- and CD117-associated CSC-like marker expression in surviving cancer cells in vivo, which can be suppressed by the addition of the JAK2-specific inhibitor CYT387, leading to a significantly smaller tumor burden. These novel findings have the potential for the development of CSC-targeted therapy to improve the treatment outcomes of ovarian cancer patients.

11.
Biol Reprod ; 88(3): 66, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23303681

RESUMO

TGFBR3 (betaglycan), a TGFbeta superfamily coreceptor, is essential for normal seminiferous cord and Leydig cell development in the fetal mouse testis and has been associated with testicular dysgenesis syndrome in men. However, the mechanisms underlying TGFBR3-regulated testis development are unclear. We tested the hypothesis that loss of Tgfbr3 compromises the functions of TGFbeta2 in the differentiating fetal testis. Analysis of expression of transcripts encoding the TGFbeta superfamily members showed a predominance of TGFbeta mRNAs during the critical window of development when testis structure is established (11.5-14.5 days postcoitum [dpc]). When cultured under basal conditions for 2 days, explants of 13.5 dpc wild-type fetal testis/mesonephros complexes exhibited structure and gene expression profiles resembling those observed in vivo between 13.5-15.5 dpc. Similarly, development of Tgfbr3 knockout testis explants recapitulated the dysgenesis and decreased somatic cell marker expression previously observed in vivo. TGFbeta2 treatment partially rescued cord development in 11.5-13.5 dpc Tgfbr3 knockout explants but did not significantly alter somatic or germ cell gene expression. In contrast, TGFbeta2 treatment of wild-type explants disrupted cord structure and significantly downregulated the somatic and steroidogenic cell markers Amh, Sf1, Star, Cyp11a, Hsd3b1, and Cyp17a1. We conclude that 1) the compromised cord development in Tgfbr3 null fetal testis is due to, at least in part, disrupted TGFbeta2 function; 2) the reduction in steroidogenesis observed in the Tgfbr3 null testis may be regulated by additional TGFBR3 ligands, rather than TGFbeta2; and 3) both cord maintenance and somatic cell development are highly sensitive to the levels of TGFbeta2.


Assuntos
Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Testículo/embriologia , Fator de Crescimento Transformador beta2/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Testículo/metabolismo
12.
Biol Reprod ; 82(1): 153-62, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19696014

RESUMO

Betaglycan (Tgfbr3) is a coreceptor for transforming growth factor-beta (TGFB) superfamily ligands. In the current study, a defect in seminiferous cord formation was detected in 12.5-13.5 days postcoitum (dpc) beta glycan null murine testis. Immunohistochemistry with antibodies against cell-specific markers revealed defects in somatic cell populations. To confirm these data, quantitative real-time PCR was performed to determine changes in the expression levels of genes involved in fetal testis cell differentiation and function. The expression levels of the Leydig cell markers Insl3, Cyp17a1, Cyp11a1, Star, and Hsd3b1 were reduced in knockout testis compared to wild-type testis, beginning at 12.5 dpc. Whole mount in situ hybridization confirmed that Cyp11a1 expression was reduced in the null testis, but its distribution pattern was unchanged. Apoptosis was not affected by the loss of beta glycan, but proliferation within the interstitium was reduced at 14.5 dpc. However, morphometric analysis showed no changes in Leydig cell counts between the wild-type and the knockout testes at 14.5 dpc, indicating that fetal Leydig function, rather than number, was affected by the loss of beta glycan. The expression levels of Sertoli cell markers Dhh, Sox9, and Amh were also reduced in the knockout testis at 14.5 dpc. However, the expression of fetal germ cell markers Pou5f1 and DDX4 were not changed across the genotypes at any age examined. Our data show that the presence of beta glycan is required for normal cord formation, normal fetal Leydig cell development, and the establishment of fetal testis endocrine function, thus implicating TGFB superfamily members as regulators of early fetal testis structure and function.


Assuntos
Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Diferenciação Sexual , Testículo/embriologia , Testículo/metabolismo , Animais , Feto/metabolismo , Células Intersticiais do Testículo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Mol Cell Endocrinol ; 307(1-2): 149-56, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19524135

RESUMO

Betaglycan is an inhibin-binding protein co-receptor, the forced expression of which confers inhibin responsiveness on cells previously non-responsive to inhibin. The present study determines whether removal of betaglycan expression in otherwise inhibin-responsive cells will render the cells insensitive to inhibin. Small interfering RNAs (siRNAs) designed to the betaglycan gene were transfected into LbetaT2 gonadotrope cells to 'knock-down' betaglycan expression. To control for non-specific effects, siRNAs corresponding to an unrelated sequence (BF-1) were used. Two activin-responsive promoter constructs were used to assess inhibin bioactivity; an ovine FSHbeta promoter (oFSHbeta-lux), and a construct containing three copies of the activin-responsive sequence from the GnRHR promoter (3XpGRAS-PRL-lux). Activin stimulated the activity of both promoters 5-8-fold. Inhibin suppressed these activin-stimulated promoter activities by 52+/-11% and 51+/-7%, respectively. Similar inhibin suppression was also seen for cells co-transfected with the control BF-1 siRNAs. In contrast, inhibin's ability to suppress activin-stimulated activity was significantly reduced (33+/-3%, p<0.005 and 24+/-4%, p<0.045, respectively) in cells co-transfected with betaglycan siRNAs. These results demonstrated that endocrine effects of inhibin as a negative feedback controller of FSH production in gonadotropes are dependent on betaglycan expression.


Assuntos
Gonadotrofos/citologia , Gonadotrofos/metabolismo , Inibinas/metabolismo , Proteoglicanas/genética , Interferência de RNA , Receptores de Fatores de Crescimento Transformadores beta/genética , Animais , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transfecção
14.
Mol Endocrinol ; 23(4): 539-48, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19164448

RESUMO

Betaglycan is a type III TGFbeta receptor that modulates cellular sensitivity to inhibins and TGFbeta. Previous studies have suggested that betaglycan acts as a tumor suppressor in certain human epithelial cancers. However, the roles of betaglycan in ovarian granulosa cell tumors (GCTs) are poorly understood. The objective of this study was to determine whether human GCTs exhibit betaglycan expression and, if so, what impact this receptor has on tumor biology. Real-time PCR was used to quantify betaglycan transcripts in human GCTs (n = 17) and normal premenopausal ovaries (n = 11). This analysis established that GCTs exhibited a significant 2-fold lower mean betaglycan mRNA level as compared with the normal ovary (P < 0.05). Similarly, two human GCT cell lines, KGN and COV434, exhibited low betaglycan expression and poor responsiveness to TGFbeta and inhibin A in luciferase reporter assays, which was restored by stable transfection of wild-type betaglycan. Betaglycan significantly increased the adhesion of COV434 (P < 0.05) and KGN (P < 0.0001) cells, decreased cellular invasion through Matrigel, and inhibited wound healing. Expression of mutant forms of betaglycan that are defective in TGFbeta and/or inhibin binding in each GCT cell line revealed that the inhibitory effects of betaglycan on wound healing were most strongly linked to the inhibin-binding region of betaglycan. Furthermore, knockdown of INHA mRNA expression abrogated the betaglycan-mediated inhibition of wound healing and invasion, whereas both INHA silencing and TGFbeta neutralization abolished the betaglycan-mediated increase in adhesion to substrate. These data suggest that loss of betaglycan contributes to the pathogenesis of GCTs.


Assuntos
Tumor de Células da Granulosa/patologia , Neoplasias Ovarianas/patologia , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Ativinas/genética , Ativinas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Tumor de Células da Granulosa/metabolismo , Humanos , Inibinas/genética , Inibinas/metabolismo , Ligantes , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
15.
Endocrinology ; 148(11): 5355-68, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17656464

RESUMO

Inhibin antagonizes activin and bone morphogenetic protein actions by sequestering their type II receptors in high-affinity complexes with betaglycan, a coreceptor that inhibin shares with TGF-beta. To clarify the nature and extent of interactions between inhibin and TGF-beta, we therefore examined 1) the mutual competition between these ligands for binding, 2) the regulation of endogenous betaglycan expression by inhibin and TGF-beta isoforms, and 3) the consequences of such betaglycan regulation for subsequent inhibin binding in mouse Leydig (TM3), Sertoli (TM4), adrenocortical cancer (AC), and gonadotroph (LbetaT2) cell lines, chosen to model cellular targets for local and endocrine actions of inhibin. Recognized inhibin, activin, and TGF-beta binding proteins and TGF-beta/activin signaling components were expressed by all four cell types, but AC and LbetaT2 cells notably lacked the type II receptor for TGF-beta, TbetaRII. Overnight treatment of TM3 and TM4 cells with TGF-beta1 suppressed the levels of betaglycan mRNA by 73 and 46% of control and subsequent [(125)I]inhibin A binding by 64 and 41% of control (IC(50) of 54 and 92 pm), respectively. TGF-beta2 acted similarly. TGF-beta pretreatments commensurately decreased the [(125)I]inhibin A affinity labeling of betaglycan on TM3 and TM4 cells. TGF-beta isoforms as direct competitors blocked up to 60% of specific inhibin A binding sites on TM3 and TM4 cells but with 9- to 17-fold lower potency than when acting indirectly via regulation of betaglycan. Only the competitive action of TGF-beta was observed with TbetaRII-deficient AC and LbetaT2 cells. Neither inhibin A nor inhibin B regulated betaglycan mRNA or competed for binding of [(125)I]TGF-beta1 or -beta2. Thus, inhibin binding to its target cell types is controlled by TGF-beta through dual mechanisms of antagonism, the operation of which vary with cell context and display different sensitivities to TGF-beta. In contrast, TGF-beta binding is relatively insensitive to the presence of either inhibin A or inhibin B.


Assuntos
Inibinas/antagonistas & inibidores , Proteoglicanas/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Animais , Ligação Competitiva , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Inibinas/metabolismo , Inibinas/farmacologia , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Endocrinology ; 147(7): 3462-71, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16601134

RESUMO

Inhibin, a member of the TGF-beta superfamily, has been proposed to act as an inhibitor of activin and bone morphogenetic protein (BMP) by sequestering their type II receptors in nonsignaling complexes with betaglycan. This mechanism of inhibin action was tested in a mouse adrenocortical (AC) cell line by examining the effects of inhibins A and B on cytochrome P450 17alpha-hydroxylase 17,20-lyase (Cyp17) expression and 17alpha-hydroxylase activity, measured by progesterone 17alpha-hydroxylation, in the absence and presence of activin or BMP isoforms. Cyp17 mRNA endogenously expressed by AC cells was suppressed by activins A and B and BMP-2, -6, and -7, and each ligand accordingly inhibited 17alpha-hydroxyprogesterone production (IC(50) of 0.24, 0.27, 0.4, 0.51, and 2.2 nm, respectively). Neither inhibin A nor inhibin B alone affected Cyp17 expression or 17alpha-hydroxyprogesterone production. Both inhibin A and inhibin B blocked the inhibitory actions of activins A and B in AC cells, supporting the antiactivin model of inhibin action. Inhibin A provided more potent and effective antagonism of both activins than did inhibin B, and activin A was less subject to antagonism by either inhibin than was activin B. In contrast to the major antagonism of activin by both inhibins, only inhibin A antagonized the actions of BMP-2, BMP-6, and BMP-7, whereas inhibin B was ineffective against all tested BMP isoforms except BMP-7 at high concentrations. These results provide limited support for the anti-BMP model of inhibin action and reveal that, relative to inhibin A, inhibin B essentially behaves as a selective activin antagonist in AC cells. In conclusion, inhibins A and B differentially antagonize the actions of activins and BMPs to control adrenocortical C(19) steroid production.


Assuntos
Ativinas/metabolismo , Córtex Suprarrenal/citologia , Proteínas Morfogenéticas Ósseas/metabolismo , Inibinas/fisiologia , Córtex Suprarrenal/metabolismo , Animais , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 6 , Proteína Morfogenética Óssea 7 , Linhagem Celular , Inibinas/metabolismo , Camundongos , Ratos , Esteroide 17-alfa-Hidroxilase/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
J Soc Gynecol Investig ; 13(1): 19-24, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16303322

RESUMO

OBJECTIVE: Prostaglandins (PGs) are key regulators of cervical dilatation and membrane breakdown at the onset of labor. PG synthase and receptor expression has been previously documented in uterine tissues; however, mechanisms governing the changes occurring in the cervix and amnion are less well established. The aim of the current study was to determine the level of expression of PG synthetic enzymes and receptors in these tissues in association with induced labor in sheep. METHODS: Labor was induced in sheep at 135 days of gestation by continuous fetal dexamethasone infusion. Amnion and cervical tissue was obtained before and after labor for measurement of mRNA encoding enzymes (cytosolic phospholipase A2 [cPLA2], PGH synthase-2 [PGHS-2], PGF synthase [PGFS], and PGE synthase [PGES]) and receptors (FP and EP1-4) by real-time polymerase chain reaction (PCR). RESULTS: cPLA2 expression increased significantly in cervical tissue at labor onset, whereas expression of the other enzymes measured did not change. There was a marked rise in EP3 expression in the cervix, but abundance of this receptor was lower than EP2 and FP expression, which did not change. The amnion exhibited a labor-associated decrease in PGHS-2, PGFS, and FP mRNA expression. CONCLUSION: The regulation of PG synthesis and action occurring in the amnion and cervix in association with labor appear to differ markedly between the two tissues, indicating tissue-specific roles for PGs. The data support a role for increased PG synthesis and action in the cervix and suggest a decrease in PG production and action in the amnion, in sharp contrast to the pattern reported in human amnion.


Assuntos
Âmnio/metabolismo , Colo do Útero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Prostaglandinas E/biossíntese , Prostaglandinas F/biossíntese , Animais , Feminino , Perfilação da Expressão Gênica , Trabalho de Parto , Reação em Cadeia da Polimerase , Gravidez , Receptores de Prostaglandina/biossíntese , Ovinos
18.
Biol Reprod ; 72(4): 937-43, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15601920

RESUMO

Prostaglandins (PGs) play a pivotal role in the initiation and progression of term and preterm labor. Uterine activity is stimulated primarily by PGE(2) and PGF(2alpha) acting on prostaglandin E (EP) and prostaglandin F (FP) receptors, respectively. Activation of FP receptors strongly stimulates the myometrium, whereas stimulation of EP receptors may lead to contraction or relaxation, depending on the EP subtype (EP1-4) expression. Thus, the relative expression of FP and EP1-4 may determine the responsiveness to PGE(2) and PGF(2alpha). The aims of this study were to characterize the expression of EP1-4 and FP in intrauterine tissues and placentome, together with myometrial responsiveness to PG, following the onset of dexamethasone-induced preterm and spontaneous term labor. Receptor mRNA expression was measured using quantitative real-time polymerase chain reaction using species-specific primers. There was no increase in myometrial contractile receptor expression at labor onset, nor was there a change in sensitivity to PGE(2) and PGF(2alpha). This suggests expression of these receptors reaches maximal levels by late gestation in sheep. Placental tissue showed a marked increase in EP2 and EP3 receptor expression, the functions of which are unknown at this time. Consistent with previous reports, these results suggest that PG synthesis is the main factor in the regulation of uterine contractility at labor. This is the first study to simultaneously report PG E and F receptor expression in the key gestational tissues of the sheep using species-specific primers at induced-preterm and spontaneous labor onset.


Assuntos
Trabalho de Parto/fisiologia , Miométrio/fisiologia , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina/genética , Ovinos/fisiologia , Animais , Dinoprosta/sangue , Dinoprostona/sangue , Feminino , Expressão Gênica , Especificidade de Órgãos , Placenta/fisiologia , Gravidez , Especificidade da Espécie
19.
Mol Cell Endocrinol ; 228(1-2): 1-21, 2004 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-15541569

RESUMO

The pituitary gland is an important component of the endocrine system, and together with the hypothalamus, exerts considerable influence over the functions of other endocrine glands. The hypothalamus either positively or negatively regulates hormonal productions in the pituitary through its release of various trophic hormones which act on specific cell types in the pituitary to secrete a variety of pituitary hormones that are important for growth and development, metabolism, reproductive and nervous system functions. The pituitary is divided into three sections-the anterior lobe which constitute the majority of the pituitary mass and is composed primarily of five hormone-producing cell types (thyrotropes, lactotropes, corticotropes, somatotropes and gonadotropes) each secreting thyrotropin, prolactin, ACTH, growth hormone and gonadotropins (FSH and LH) respectively. There is also a sixth cell type in the anterior lobe-the non-endocrine, agranular, folliculostellate cells. The intermediate lobe produces melanocyte-stimulating hormone and endorphins, whereas the posterior lobe secretes anti-diuretic hormone (vasopressin) and oxytocin. Representative cell lines of all the six cell types of the anterior pituitary have been established and have provided valuable information on genealogy of the various cell lineages, endocrine feedback control of hormone synthesis and secretions, intrapituitary interactions between the various cell types, as well as the role of specific transcription factors that determine each differentiated cell phenotype. In this review, we will discuss the morphology and function of the cell types that make up the anterior pituitary, and the characteristics of the various functional anterior pituitary cell systems that have been established to be representative of each anterior pituitary cell lineage.


Assuntos
Hipófise/citologia , Hormônios Hipofisários/fisiologia , Animais , Linhagem Celular , Linhagem da Célula , Sistema Endócrino , Humanos , Hipófise/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...