Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327468

RESUMO

Several genes are associated with increased risk for autism spectrum disorder (ASD), neurodevelopmental disorders that present with repetitive movements and restricted interests along with deficits in social interaction/communication. While genetic alterations associated with ASD are present early in life, ASD-like behaviors are difficult to detect in early infancy. This raises the issue of whether reversal of an ASD-associated genetic alteration early in life can prevent the onset of ASD-like behaviors. Genetic alterations of SHANK3, a well-characterized gene encoding a postsynaptic scaffolding protein, are estimated to contribute to ∼0.5% of ASD and remain one of the more replicated and well-characterized genetic defects in ASD. Here, we investigate whether early genetic reversal of a Shank3 mutation can prevent the onset of ASD-like behaviors in a mouse model. Previously, we have demonstrated that mice deficient in Shank3 display a wide range of behavioral abnormalities such as repetitive grooming, social deficits, anxiety, and motor abnormalities. In this study, we replicate many of these behaviors in Shank3 mutant mice. With early genetic restoration of wild-type (WT) Shank3, we rescue behaviors including repetitive grooming and social, locomotor, and rearing deficits. Our findings support the idea that the underlying mechanisms involving ASD behaviors in mice deficient in Shank3 are susceptible to early genetic correction of Shank3 mutations.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Fenótipo
2.
J Neurosci ; 37(45): 10917-10931, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28978667

RESUMO

Genetic perturbations of the transcription factor Forkhead Box P1 (FOXP1) are causative for severe forms of autism spectrum disorder that are often comorbid with intellectual disability. Recent work has begun to reveal an important role for FoxP1 in brain development, but the brain-region-specific contributions of Foxp1 to autism and intellectual disability phenotypes have yet to be determined fully. Here, we describe Foxp1 conditional knock-out (Foxp1cKO) male and female mice with loss of Foxp1 in the pyramidal neurons of the neocortex and the CA1/CA2 subfields of the hippocampus. Foxp1cKO mice exhibit behavioral phenotypes that are of potential relevance to autism spectrum disorder, including hyperactivity, increased anxiety, communication impairments, and decreased sociability. In addition, Foxp1cKO mice have gross deficits in learning and memory tasks of relevance to intellectual disability. Using a genome-wide approach, we identified differentially expressed genes in the hippocampus of Foxp1cKO mice associated with synaptic function and development. Furthermore, using magnetic resonance imaging, we uncovered a significant reduction in the volumes of both the entire hippocampus as well as individual hippocampal subfields of Foxp1cKO mice. Finally, we observed reduced maintenance of LTP in area CA1 of the hippocampus in these mutant mice. Together, these data suggest that proper expression of Foxp1 in the pyramidal neurons of the forebrain is important for regulating gene expression pathways that contribute to specific behaviors reminiscent of those seen in autism and intellectual disability. In particular, Foxp1 regulation of gene expression appears to be crucial for normal hippocampal development, CA1 plasticity, and spatial learning.SIGNIFICANCE STATEMENT Loss-of-function mutations in the transcription factor Forkhead Box P1 (FOXP1) lead to autism spectrum disorder and intellectual disability. Understanding the potential brain-region-specific contributions of FOXP1 to disease-relevant phenotypes could be a critical first step in the management of patients with these mutations. Here, we report that Foxp1 conditional knock-out (Foxp1cKO) mice with loss of Foxp1 in the neocortex and hippocampus display autism and intellectual-disability-relevant behaviors. We also show that these phenotypes correlate with changes in both the genomic and physiological profiles of the hippocampus in Foxp1cKO mice. Our work demonstrates that brain-region-specific FOXP1 expression may relate to distinct, clinically relevant phenotypes.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Aprendizagem Espacial/fisiologia , Sinapses/fisiologia , Animais , Transtorno do Espectro Autista , Comportamento Animal/fisiologia , Região CA1 Hipocampal/fisiologia , Feminino , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/psicologia , Masculino , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/citologia , Neocórtex/fisiologia , Células Piramidais/metabolismo , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...