Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235781

RESUMO

Previous work has shown that taste responses in the nucleus tractus solitarius (NTS; the first central relay for gustation) are blunted in rats with diet-induced obesity (DIO). Here, we studied whether these effects could be reversed by Roux-en-Y gastric bypass (RYGB) surgery, an effective treatment for obesity. Rats were fed a high energy diet (60% kcal fat; HED) both before and after undergoing RYGB. Electrophysiological responses from NTS cells in unrestrained rats were recorded as they licked tastants from a lick spout. Sweet, salty, and umami tastes, as well as their naturalistic counterparts, were presented. Results were compared with those of lean rats from a previous study. As with DIO rats, NTS cells in RYGB rats were more narrowly tuned, showed weaker responses, and less lick coherence than those in lean rats. Both DIO and RYGB rats licked at a slower rate than lean rats and paused more often during a lick bout. However, unlike DIO rats, the proportion of taste cells in RYGB rats was similar to that in lean rats. Our data show that, despite being maintained on a HED after surgery, RYGB can induce a partial recovery of the deficits seen in the NTS of DIO rats.


Assuntos
Derivação Gástrica , Animais , Derivação Gástrica/métodos , Obesidade/etiologia , Obesidade/cirurgia , Ratos , Ratos Sprague-Dawley , Núcleo Solitário , Paladar/fisiologia
2.
PLoS One ; 11(8): e0160143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479490

RESUMO

A neuron's sensitivity profile is fundamental to functional classification of cell types, and underlies theories of sensory coding. Here we show that gustatory neurons in the nucleus of the solitary tract (NTS) and parabrachial nucleus of the pons (PbN) of awake rats spontaneously change their tuning properties across days. Rats were surgically implanted with a chronic microwire assembly into the NTS or PbN. Following recovery, water-deprived rats had free access to a lick spout that delivered taste stimuli while cellular activity was recorded. In 12 rats for the NTS and 8 rats for the PbN, single units could be isolated at the same electrode on consecutive days (NTS, 14 units for 2-5 consecutive days, median = 2 days; PbN, 23 units for 2-7 days, median = 2.5 days). Waveforms were highly similar (waveform template correlation > 0.99) across days in 13 units in NTS and 13 units in PbN. This degree of similarity was rare (0.3% of pairs in NTS, 1.5% of pairs in PbN) when the waveforms were from presumed-different neurons (units recorded on nonconsecutive days with at least one intervening day in which there were no spikes, or from different wires or rats). Analyses of multi-day recordings that met this criterion for "same unit" showed that responses to taste stimuli appeared, disappeared, or shifted in magnitude across days, resulting in changes in tuning. These data imply, generally, that frameworks for cell classification and, specifically, that theories of taste coding, need to consider plasticity of response profiles.


Assuntos
Núcleos Parabraquiais/fisiologia , Núcleo Solitário/fisiologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Masculino , Ratos , Ratos Sprague-Dawley , Vigília
3.
J Neurosci ; 35(16): 6284-97, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904782

RESUMO

Flavor is produced by the integration of taste, olfaction, texture, and temperature, currently thought to occur in the cortex. However, previous work has shown that brainstem taste-related nuclei also respond to multisensory inputs. Here, we test the hypothesis that taste and olfaction interact in the nucleus of the solitary tract (NTS; the first neural relay in the central gustatory pathway) in awake, freely licking rats. Electrophysiological recordings of taste and taste + odor responses were conducted in an experimental chamber following surgical electrode implantation and recovery. Tastants (0.1 m NaCl, 0.1 m sucrose, 0.01 m citric acid, and 0.0001 m quinine) were delivered for five consecutive licks interspersed with five licks of artificial saliva rinse delivered on a VR5 schedule. Odorants were n-amyl acetate (banana), acetic acid (vinegar), octanoic acid (rancid), and phenylethyl alcohol (floral). For each cell, metric space analyses were used to quantify the information conveyed by spike count, by the rate envelope, and by individual spike timing. Results revealed diverse effects of odorants on taste-response magnitude and latency across cells. Importantly, NTS cells were more competent at discriminating taste + odor stimuli versus tastants presented alone for all taste qualities using both rate and temporal coding. The strong interaction of odorants and tastants at the NTS underscores its role as the initial node in the neural circuit that controls food identification and ingestion.


Assuntos
Percepção Olfatória/fisiologia , Núcleo Solitário/fisiologia , Percepção Gustatória/fisiologia , Vigília , Potenciais de Ação/fisiologia , Animais , Masculino , Neurônios/fisiologia , Ratos , Núcleo Solitário/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...