Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 9(1): 69, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851448

RESUMO

BACKGROUND: Polyunsaturated fatty acids play a crucial role in neuronal function, and the modification of these compounds in the brain could have an impact on neurodegenerative diseases such as Alzheimer's disease. Despite the fact that arachidonic acid is the second foremost polyunsaturated fatty acid besides docosahexaenoic acid, its role and the regulation of its transfer and mobilization in the brain are poorly known. METHODS: Two groups of 39 adult male BALB/c mice were fed with an arachidonic acid-enriched diet or an oleic acid-enriched diet, respectively, for 12 weeks. After 10 weeks on the diet, mice received intracerebroventricular injections of either NaCl solution or amyloid-ß peptide (Aß) oligomers. Y-maze and Morris water maze tests were used to evaluate short- and long-term memory. At 12 weeks on the diet, mice were killed, and blood, liver, and brain samples were collected for lipid and protein analyses. RESULTS: We found that the administration of an arachidonic acid-enriched diet for 12 weeks induced short-term memory impairment and increased deleterious effects of Aß oligomers on learning abilities. These cognitive alterations were associated with modifications of expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, postsynaptic density protein 95, and glial fibrillary acidic protein in mouse cortex or hippocampus by the arachidonic acid-enriched diet and Aß oligomer administration. This diet also led to an imbalance between the main ω-6 fatty acids and the ω-3 fatty acids in favor of the first one in erythrocytes and the liver as well as in the hippocampal and cortical brain structures. In the cortex, the dietary arachidonic acid also induced an increase of arachidonic acid-containing phospholipid species in phosphatidylserine class, whereas intracerebroventricular injections modified several arachidonic acid- and docosahexaenoic acid-containing species in the four phospholipid classes. Finally, we observed that dietary arachidonic acid decreased the expression of the neuronal form of acyl-coenzyme A synthetase 4 in the hippocampus and increased the cytosolic phospholipase A2 activation level in the cortices of the mice. CONCLUSIONS: Dietary arachidonic acid could amplify Aß oligomer neurotoxicity. Its consumption could constitute a risk factor for Alzheimer's disease in humans and should be taken into account in future preventive strategies. Its deleterious effect on cognitive capacity could be linked to the balance between arachidonic acid-mobilizing enzymes.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Ácido Araquidônico/efeitos adversos , Dieta/efeitos adversos , Aprendizagem em Labirinto/fisiologia , Fragmentos de Peptídeos/toxicidade , Receptores de AMPA/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Astrócitos/metabolismo , Proliferação de Células/fisiologia , Córtex Cerebral/metabolismo , Coenzima A Ligases/metabolismo , Citosol/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Hipocampo/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Ácido Oleico/administração & dosagem , Fosfolipases A2/metabolismo , Fatores de Risco
2.
J Alzheimers Dis ; 41(2): 377-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614902

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) biomarkers have recently been included in the criteria for the diagnosis of Alzheimer's disease (AD). Since interpretation of CSF profile requires the combination of three parameters, biological data are not always conclusive and isolated elevation of phosphorylated tau (P-tau) or reduction of amyloid-ß (Aß)42 alone can be observed. In these cases, Aß42/Aß40 ratio could be more relevant than Aß42 absolute values by considering inter-individual variations in the total amyloid load. OBJECTIVE: The objective of this study was to assess the use of Aß42/Aß40 ratio to improve the accuracy of biological conclusions in the diagnosis of patients with ambiguous CSF Aß42 or tau results. METHODS: Among 386 lumbar punctures analyzed in the lab in 2 years, 122 showed ambiguous biological data that were completed by CSF Aß40 quantification and Aß42/Aß40 ratio calculation. A biological conclusion was then made using 0.05 as the Aß42/Aß40 ratio cut-off. RESULTS: Our results showed that one-third of the biological profiles of patients with atypical dementia were ambiguous. The addition of Aß42/Aß40 ratio increased the proportion of interpretable biological profiles from 69% to 87%, without changing the conclusion when usual biomarkers (Aß42 and P-tau) were concordant. CONCLUSION: Our results support the use of the Aß42/Aß40 ratio in addition to the usual CSF AD biomarkers for patients with ambiguous biological profiles. This method could be specifically directed to this population in order to improve the level of certainty for clinical routine practice.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Demência/líquido cefalorraquidiano , Demência/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/diagnóstico , Masculino , Pessoa de Meia-Idade , Fosforilação , Punção Espinal , Adulto Jovem
3.
Neurobiol Aging ; 33(6): 1123.e17-29, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22188721

RESUMO

Soluble beta-amyloid (Aß) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aß oligomers activate cytosolic phospholipase A(2) (cPLA(2)), which specifically releases arachidonic acid from membrane phospholipids. We here observed that cPLA(2) gene inactivation prevented the alterations of cognitive abilities and the reduction of hippocampal synaptic markers levels noticed upon a single intracerebroventricular injection of Aß oligomers in wild type mice. We further demonstrated that the Aß oligomer-induced sphingomyelinase activation was suppressed and that phosphorylation of Akt/protein kinase B (PKB) was preserved in neuronal cells isolated from cPLA(2)(-/-) mice. Interestingly, expression of the Aß precursor protein (APP) was reduced in hippocampus homogenates and neuronal cells from cPLA(2)(-/-) mice, but the relationship with the resistance of these mice to the Aß oligomer toxicity requires further investigation. These results therefore show that cPLA(2) plays a key role in the Aß oligomer-associated neurodegeneration, and as such represents a potential therapeutic target for the treatment of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Transtornos da Memória/enzimologia , Transtornos da Memória/genética , Doenças Neurodegenerativas/enzimologia , Fragmentos de Peptídeos/toxicidade , Fosfolipases A2 Citosólicas/fisiologia , Animais , Células Cultivadas , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doenças Neurodegenerativas/induzido quimicamente
4.
FASEB J ; 24(11): 4218-28, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20647547

RESUMO

As a hepatic receptor for triglyceride-rich lipoproteins, the lipolysis-stimulated lipoprotein receptor (LSR) may be involved in the dynamics of lipid distribution between the liver and peripheral tissues. Here, we explore the potential role of leptin in regulating LSR. At physiological concentrations (1-10 ng/ml), leptin increased LSR protein and mRNA levels in Hepa1-6 cells through an ERK1/2-dependent and α-amanitin-sensitive pathway. In vivo, leptin treatment of C57BL6/Rj mice (1 µg 2×/d, 8 d) led to a significant increase in hepatic LSR mRNA and protein, decreased liver triglycerides and increased VLDL secretion as compared to controls. LSR(+/-) mice with elevated postprandial lipemia placed on a high-fat (60% kcal) diet exhibited accelerated weight gain and increased fat mass as compared to controls. While plasma leptin levels were increased 3-fold, hepatic leptin receptor protein levels and phosphorylation of ERK1/2 were significantly reduced. Therefore, leptin is an important regulator of LSR protein levels providing the means for the control of hepatic uptake of lipids during the postprandial phase. However, this may no longer be functional in LSR(+/-) mice placed under a chronic dietary fat load, suggesting that this animal model could be useful for the study of molecular mechanisms involved in peripheral leptin resistance.


Assuntos
Leptina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Período Pós-Prandial , Receptores de Lipoproteínas/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Imunofluorescência , Leptina/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase
5.
J Neurosci ; 30(22): 7516-27, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519526

RESUMO

The development of novel therapeutic strategies for Alzheimer's disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta (Abeta) oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure long-term administration of CNTF in the brain, we used recombinant cells secreting CNTF encapsulated in alginate polymers. The implantation of these bioreactors in the brain of Abeta oligomer-infused mice led to a continuous secretion of recombinant CNTF and was associated with the robust improvement of cognitive performances. Most importantly, CNTF led to full recovery of cognitive functions associated with the stabilization of synaptic protein levels in the Tg2576 AD mouse model. In vitro as well as in vivo, CNTF activated a Janus kinase/signal transducer and activator of transcription-mediated survival pathway that prevented synaptic and neuronal degeneration. These preclinical studies suggest that CNTF and/or CNTF receptor-associated pathways may have AD-modifying activity through protection against progressive Abeta-related memory deficits. Our data also encourage additional exploration of ex vivo gene transfer for the prevention and/or treatment of AD.


Assuntos
Doença de Alzheimer/complicações , Fator Neurotrófico Ciliar/biossíntese , Fator Neurotrófico Ciliar/uso terapêutico , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Sinapses/efeitos dos fármacos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/genética , Encéfalo/patologia , Contagem de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Fator Neurotrófico Ciliar/administração & dosagem , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinapses/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/patologia , Sinaptossomos/ultraestrutura , Fatores de Tempo , Transfecção/métodos
6.
Biochimie ; 91(6): 804-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19303044

RESUMO

In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble beta-amyloid (Abeta) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Abeta oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Abeta-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Abeta peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Abeta-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Abeta oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Metabolismo dos Lipídeos/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Apoptose/fisiologia , Ácidos Graxos Ômega-3/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia
7.
J Neurochem ; 96(2): 385-95, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16300635

RESUMO

A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown. We hypothesized that DHA enrichment of plasma membranes could protect neurones from apoptosis induced by soluble Abeta oligomers. DHA pre-treatment was observed to significantly increase neuronal survival upon Abeta treatment by preventing cytoskeleton perturbations, caspase activation and apoptosis, as well as by promoting extracellular signal-related kinase (ERK)-related survival pathways. These data suggest that DHA enrichment probably induces changes in neuronal membrane properties with functional outcomes, thereby increasing protection from soluble Abeta oligomers. Such neuroprotective effects could be of major interest in the prevention of AD and other neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Caspases/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Citoesqueleto/efeitos dos fármacos , Citosol/enzimologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Oligodendroglia/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Fosfolipases A/metabolismo , Ratos , Ratos Wistar , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...