Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(22): 6224-9, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185934

RESUMO

Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake.


Assuntos
Ciclo do Carbono/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Carbono/metabolismo , Secas , Temperatura Alta , Folhas de Planta/crescimento & desenvolvimento , Solo/química , Mudança Climática , Pradaria , Folhas de Planta/efeitos dos fármacos
2.
Ecol Lett ; 17(4): 435-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24393400

RESUMO

Little is known about the role of plant functional diversity for ecosystem-level carbon (C) fluxes. To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown species from a long-term grassland biodiversity experiment ('The Jena Experiment') into a controlled environment facility for ecosystem research (Ecotron). This allowed quantifying the effects of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C fluxes with vegetation structure and functional trait-based predictors, we found that increasing plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Biodiversidade , Folhas de Planta/química , Plantas/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...