Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(21): 214101, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879667

RESUMO

In mixed quantum-classical nonadiabatic molecular dynamics methods, the anchoring of the electronic wave function to a single nuclear geometry results in both quantitative and qualitative errors in the dynamics. In the context of both Ehrenfest and trajectory surface hopping methods, methods for incorporating decoherence are widely used to eliminate these errors. However, the accuracy of these methods often depends strongly on the parameterization of the decoherence time and/or other related quantities. Here, we present a refinement of the recently introduced collapse to a block (TAB) scheme for incorporating decoherence into Ehrenfest dynamics. The proposed approach incorporates an approximation to the history of the population dynamics and treats the coherence decay as Gaussian, rather than exponential. This method uses parameters that can be obtained from first principles, rather than empirical fitting. Application to one-dimensional models indicates excellent agreement with numerically exact simulations. We also introduce a second refinement to the TAB method: a robust linear least-squares algorithm for determining collapse probabilities.

2.
J Chem Phys ; 154(9): 090902, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685182

RESUMO

The complete active space self-consistent field (CASSCF) method has seen broad adoption due to its ability to describe the electronic structure of both the ground and excited states of molecules over a broader swath of the potential energy surface than is possible with the simpler Hartree-Fock approximation. However, it also has a reputation for being unwieldy, computationally costly, and un-black-box. Here, we discuss a class of alternatives, complete active space configuration interaction (CASCI) methods, paying particular attention to their application to electronic excited states. The goal of this Perspective is fourfold. First, we argue that CASCI is not merely an approximation to CASSCF, in that it can be designed to have important qualitative advantages over CASSCF. Second, we present several insights drawn from our experience experimenting with different schemes for computing orbitals to be employed in CASCI. Third, we argue that CASCI is well suited for application to nanomaterials. Finally, we reason that, with the rise in new low-scaling approaches for describing multireference systems, there is a greater need than ever to develop new methods for defining orbitals that provide an efficient and accurate description of both static correlation and electronic excitations in a limited active space.

3.
J Chem Phys ; 153(11): 114104, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962354

RESUMO

Decoherence corrections increase the accuracy of mixed quantum-classical nonadiabatic molecular dynamics methods, but they typically require explicit knowledge of the potential energy surfaces of all occupied electronic states. This requirement renders them impractical for applications in which large numbers of electronic states are occupied. The authors recently introduced the collapse to a block (TAB) decoherence correction [M. P. Esch and B. G. Levine, J. Chem. Phys. 152, 234105 (2020)], which incorporates a state-pairwise definition of decoherence time to accurately describe dynamics on more than two electronic states. In this work, TAB is extended by introduction of a scheme for efficiently computing a small number of approximate eigenstates of the electronic Hamiltonian, eliminating the need for explicit knowledge of a large number of potential energy surfaces. This adaptation of TAB for dense manifolds of states (TAB-DMS) is systematically improvable by increasing the number of computed approximate eigenstates. Application to a series of one-dimensional model problems demonstrates that TAB-DMS can be accurate when even a very modest number of approximate eigenstates are computed (four in all models tested here). Comparison of TAB simulations to exact quantum dynamical simulations indicates that TAB is quite accurate so long as the decoherence correction is carefully parameterized.

4.
J Chem Phys ; 152(23): 234105, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571062

RESUMO

Independent trajectory (IT) nonadiabatic molecular dynamics simulation methods are powerful tools for modeling processes involving transitions between electronic states. Incorporation and refinement of decoherence corrections into popular IT methods, e.g., Ehrenfest dynamics and trajectory surface hopping, is an important means of improving their accuracies. In this work, we identify a new challenge in the development of such decoherence corrections; when a system exists in a coherent superposition of three or more electronic states, coherences may decay unphysically when the decoherence correction is based on decoherence times assigned on a state-wise basis. As a solution, we introduce decoherence corrected Ehrenfest schemes based on decoherence times assigned on a state-pairwise basis. By application of these methods to a set of very simple one-dimensional model problems, we show that one of these state-pairwise methods ("collapse to a block") correctly describes the loss of coherence between all pairs of states in our multistate model problems, whereas a method based on a state-wise description of coherence loss does not. The new one-dimensional models introduced here can serve as useful tests for other decoherence correction schemes.

5.
Phys Chem Chem Phys ; 21(21): 10870-10878, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106323

RESUMO

A predictive theory connecting atomic structure to the rate of recombination would enable the rational design of semiconductor nanomaterials for optoelectronic applications. Recently our group has demonstrated that the theoretical study of conical intersections can serve this purpose. Here we review recent work in this area, focusing on the thesis that low-energy conical intersections in nanomaterials share a common feature: locality. We define a conical intersection as local if (a) the intersecting states differ by the excitation of an electron between spatially local orbitals, and (b) the intersection is accessed when the energies of these orbitals are tuned by local distortions of the geometry. After illustrating the locality of the conical intersection responsible for recombination at dangling bond defects in silicon, we demonstrate the locality of low-energy conical intersections in cases where locality may be a surprise. First, we demonstrate the locality of low-energy self-trapped conical intersections in a pristine silicon nanocrystal, which has no defects that one would expect to serve as the center of a local intersection. Second, we demonstrate that the lowest energy intersection in a silicon system with two neighboring dangling bond defects localizes to a single defect site. We discuss the profound implications of locality for predicting the rate of recombination and suggest that the locality of intersections could be exploited in the experimental study of recombination, where spectroscopic studies of molecular models of defects could provide new insights.

6.
J Phys Chem A ; 123(13): 2661-2673, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30843698

RESUMO

The utility of optoelectronic materials can be greatly reduced by the presence of efficient pathways for nonradiative recombination (NRR). Lead halide perovskites have garnered much attention in recent years as materials for solar energy conversion, because they readily absorb visible light, are easy to synthesize, and have a low propensity for NRR. Here we report a theoretical study of the pathways for NRR in an archetypal lead halide perovskite: CsPbBr3. Specifically, we identified a set of conical intersection (CIs) in both a molecule-sized cluster model (Cs4PbBr6) and nanoparticle model (Cs12Pb4Br20) of the CsPbBr3 surface. The energies of the minimal energy CIs, corrected for both dynamical electron correlation and spin-orbit coupling, are well above the bulk band gap of CsPbBr3, suggesting that these intersections do not provide efficient pathways for NRR in this material. Analysis of the electronic structure at these intersections suggests that the ionic nature of the bonds in CsPbBr3 may play a role in the high energy of these CIs. The lowest-energy intersections all involve charge transfer over long distances, whether it be across a dissociated bond or between neighboring unit cells.

7.
Annu Rev Phys Chem ; 70: 21-43, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30633637

RESUMO

The ability to predict and describe nonradiative processes in molecules via the identification and characterization of conical intersections is one of the greatest recent successes of theoretical chemistry. Only recently, however, has this concept been extended to materials science, where nonradiative recombination limits the efficiencies of materials for various optoelectronic applications. In this review, we present recent advances in the theoretical study of conical intersections in semiconductor nanomaterials. After briefly introducing conical intersections, we argue that specific defects in materials can induce conical intersections between the ground and first excited electronic states, thus introducing pathways for nonradiative recombination. We present recent developments in theoretical methods, computational tools, and chemical intuition for the prediction of such defect-induced conical intersections. Through examples in various nanomaterials, we illustrate the significance of conical intersections for nanoscience. We also discuss challenges facing research in this area and opportunities for progress.

8.
Phys Chem Chem Phys ; 19(21): 14085-14095, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28518192

RESUMO

The optically populated excited state wave packet propagates along multidimensional intramolecular coordinates soon after photoexcitation. This action occurs alongside an intermolecular response from the surrounding solvent. Disentangling the multidimensional convoluted signal enables the possibility to separate and understand the initial intramolecular relaxation pathways over the excited state potential energy surface. Here we track the initial excited state dynamics by measuring the fluorescence yield from the first excited state as a function of time delay between two color femtosecond pulses for several cyanine dyes having different substituents. We find that when the high frequency pulse precedes the low frequency one and for timescales up to 200 fs, the excited state population can be depleted through stimulated emission with efficiency that is dependent on the molecular electronic structure. A similar observation at even shorter times was made by scanning the chirp (frequencies ordering) of a femtosecond pulse. The changes in depletion reflect the rate at which the nuclear coordinates of the excited state leave the Franck-Condon (FC) region and progress towards achieving equilibrium. Through functional group substitution, we explore these dynamic changes as a function of dipolar change following photoexcitation. Density functional theory calculations were performed to provide greater insight into the experimental spectroscopic observations. Complete active space (CAS) self-consistent field and CAS second order perturbation theory calculated potential energy surfaces tracking twisting and pyramidalization confirm that the steeper potential at the FC region leads to the observation of faster wave packet dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...