Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14231, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987761

RESUMO

Fully-printed temperature sensor arrays-based on a flexible substrate and featuring a high spatial-temperature resolution-are immensely advantageous across a host of disciplines. These range from healthcare, quality and environmental monitoring to emerging technologies, such as artificial skins in soft robotics. Other noteworthy applications extend to the fields of power electronics and microelectronics, particularly thermal management for multi-core processor chips. However, the scope of temperature sensors is currently hindered by costly and complex manufacturing processes. Meanwhile, printed versions are rife with challenges pertaining to array size and sensor density. In this paper, we present a passive matrix sensor design consisting of two separate silver electrodes that sandwich one layer of sensing material, composed of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). This results in appreciably high sensor densities of 100 sensor pixels per cm[Formula: see text] for spatial-temperature readings, while a small array size is maintained. Thus, a major impediment to the expansive application of these sensors is efficiently resolved. To realize fast and accurate interpretation of the sensor data, a neural network (NN) is trained and employed for temperature predictions. This successfully accounts for potential crosstalk between adjacent sensors. The spatial-temperature resolution is investigated with a specially-printed silver micro-heater structure. Ultimately, a fairly high spatial temperature prediction accuracy of 1.22  °C is attained.

2.
Opt Express ; 28(17): 24693-24707, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32907004

RESUMO

We report on compact and efficient silicon-organic hybrid (SOH) Mach-Zehnder modulators (MZM) with low phase-shifter insertion loss of 0.7 dB. The 280 µm-long phase shifters feature a π-voltage-length product of 0.41 Vmm and a loss-efficiency product as small as aUπL = 1.0 VdB. The device performance is demonstrated in a data transmission experiment, where we generate on-off-keying (OOK) and four-level pulse-amplitude modulation (PAM4) signals at symbol rates of 100 GBd, resulting in line rates of up to 200 Gbit/s. Bit error ratios are below the threshold for hard-decision forward error correction (HD-FEC) with 7% coding overhead, leading to net data rates of 187 Gbit/s. This is the highest PAM4 data rate ever achieved for a sub-1 mm silicon photonic MZM.

3.
Microsyst Nanoeng ; 5: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636928

RESUMO

The introduction of two-photon polymerization (TPP) into the area of Carbon Micro Electromechanical Systems (C-MEMS) has enabled the fabrication of three-dimensional glassy carbon nanostructures with geometries previously unattainable through conventional UV lithography. Pyrolysis of TPP structures conveys a characteristic reduction of feature size-one that should be properly estimated in order to produce carbon microdevices with accuracy. In this work, we studied the volumetric shrinkage of TPP-derived microwires upon pyrolysis at 900 °C. Through this process, photoresist microwires thermally decompose and shrink by as much as 75%, resulting in glassy carbon nanowires with linewidths between 300 and 550 nm. Even after the thermal decomposition induced by the pyrolysis step, the linewidth of the carbon nanowires was found to be dependent on the TPP exposure parameters. We have also found that the thermal stress induced during the pyrolysis step not only results in axial elongation of the nanowires, but also in buckling in the case of slender carbon nanowires (for aspect ratios greater than 30). Furthermore, we show that the calculated residual mass fraction that remains after pyrolysis depends on the characteristic dimensions of the photoresist microwires, a trend that is consistent with several works found in the literature. This phenomenon is explained through a semi-empirical model that estimates the feature size of the carbon structures, serving as a simple guideline for shrinkage evaluation in other designs.

4.
Sensors (Basel) ; 17(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053610

RESUMO

Surface-enhanced Raman spectroscopy (SERS) combines the high specificity of Raman scattering with high sensitivity due to an enhancement of the electromagnetic field by metallic nanostructures. However, the tyical fabrication methods of SERS substrates suffer from low throughput and therefore high costs. Furthermore, point-of-care applications require the investigation of liquid solutions and thus the integration of the SERS substrate in a microfluidic chip. We present a roll-to-roll fabrication approach for microfluidics with integrated, highly efficient, surface-enhanced Raman scattering structures. Microfluidic channels are formed using roll-to-roll hot embossing in polystyrene foil. Aerosol jet printing of a gold nanoparticle ink is utilized to manufacture highly efficient, homogeneous, and reproducible SERS structures. The modified channels are sealed with a solvent-free, roll-to-roll, thermal bonding process. In continuous flow measurements, these chips overcome time-consuming incubation protocols and the poor reproducibility of SERS experiments often caused by inhomogeneous drying of the analyte. In the present study, we explore the influence of the printing process on the homogeneity and the enhancement of the SERS structures. The feasibility of aerosol-jet-modified microfluidic channels for highly sensitive SERS detection is demonstrated by using solutions with different concentrations of Rhodamine 6G and adenosine. The printed areas provide homogeneous enhancement factors of ~4 × 106. Our work shows a way towards the low-cost production of tailor-made, SERS-enabled, label-free, lab-on- chip systems for bioanalysis.

5.
Appl Opt ; 56(13): 3703-3708, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28463255

RESUMO

We demonstrate the realization of 3D whispering-gallery-mode (WGM) microlasers by direct laser writing (DLW) and their replication by nanoimprint lithography using a soft mold technique ("soft NIL"). The combination of DLW as a method for rapid prototyping and soft NIL offers a fast track towards large scale fabrication of 3D passive and active optical components applicable to a wide variety of materials. A performance analysis shows that surface-scattering-limited Q-factors of replicated resonators as high as 1×105 at 635 nm can be achieved with this process combination. Lasing in the replicated WGM resonators is demonstrated by the incorporation of laser dyes in the target material. Low lasing thresholds in the order of 15 kW/cm2 are obtained under ns-pulsed excitation.

6.
ACS Omega ; 2(10): 6500-6505, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457251

RESUMO

One of the primary challenges in explosive detection using fluorescence quenching is the identification and quantification of detected targets. In this work, we explore the reliability of aerosol jet printed sensor arrays for the discrimination of nitroaromatic traces using linear discriminant analysis (LDA). We varied the amount of the deposited material by controlling the printer's shutter to investigate the impact on the detection reliability. For a twofold variation of the amount of the deposited material, we report excellent classification rates between 81 and 96% for the discrimination of nitrobenzene, 1,3-dinitrobenzene, and 2,4-dinitrotoluene at 1, 3, and 10 parts per billion in air, respectively. Our results close to the detection limits indicate a remarkable identification and quantification of explosive trace vapors because of high control of the printing process. This work demonstrates the high potential of digitally printed fluorescence quenching sensor arrays and the excellent capabilities of LDA as a simple supervised statistical learning technique.

7.
Chemistry ; 21(41): 14297-300, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26387876

RESUMO

Combining the molecular wire effect with a biphasic sensing approach (analyte in water, sensor-dye in 2-methyltetrahydrofuran) and a microfluidic flow setup leads to the construction of a mercury-sensitive module. We so instantaneously detect Hg(2+) ions in water at a 500 µM concentration. The sensor, conjugated non-water soluble polymer 1 (XFPF), merely supports dibutylaniline substituents as binding units. Yet, selective and sensitive detection of Hg(2+) -ions is achieved in water. The enhancement in sensory response, when comparing the reference compound 2 to that of 1 in a biphasic system in a microfluidic chip is >10(3) . By manipulation of the structure of 1, further powerful sensor systems should be easily achieved.


Assuntos
Compostos de Anilina/química , Íons/química , Mercúrio/química , Furanos/química , Ligantes , Microfluídica/métodos , Água/química
8.
Opt Express ; 21(24): 29921-6, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514543

RESUMO

We demonstrate a method for the combination of UV-lithography and direct laser writing using two-photon polymerization (2PP-DLW). First a dye doped photoresist is used for UV-lithography. Adding an undoped photoresist on top of the developed structures enables three-dimensional alignment of the 2PP-DLW structures by detecting the spatially varying fluorescence of the two photoresists. Using this approach we show three dimensional alignment by adding 3D structures made by 2PP-DLW to a previously UV-exposed structure. Furthermore, a fluidic system with an integrated total internal reflection mirror to observe particles in a microfluidic channel is demonstrated.


Assuntos
Lentes , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Molecular/métodos , Fotografação/métodos , Polímeros/química , Polímeros/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Fótons , Propriedades de Superfície/efeitos da radiação , Raios Ultravioleta
9.
Opt Express ; 20(27): 28855-61, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263126

RESUMO

We demonstrate the fabrication of single mode optical waveguides by irradiating polydimethylsiloxane (PDMS) with a low cost Hg lamp through a conventional quartz mask. By increasing the refractive index of the irradiated areas, waveguiding is achieved with an attenuation of 0.47 dB/cm at a wavelength of 635 nm. The refractive index change is stable in ambient air and water for time periods of more than 3 months. The excitation of water-dispersed fluorescent nanoparticles in the evanescent field of the waveguide is demonstrated.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Ópticos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta
10.
Opt Express ; 20 Suppl 6: A932-40, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187670

RESUMO

White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.

11.
Opt Express ; 20(6): 6170-4, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418497

RESUMO

We report a simple approach to enhance the out-coupling efficiency in white organic light emitting diodes (WOLEDs). By incorporating MgF2-columns into the ITO-anode and optimizing of their geometry, an overall efficiency enhancement of up to 38% is achieved. In addition, the structuring of the anode does not lead to a change in the electrical behaviour of the devices. As evidenced by goniometric measurements, the angular emission characteristics of the WOLEDs remain unchanged. Simulations, performed with the T-matrix method, reveal the effect of the enhanced outcoupling efficiency of this approach.


Assuntos
Eletrodos , Fluoretos/química , Iluminação/instrumentação , Compostos de Magnésio/química , Semicondutores , Cor , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Opt Express ; 20(23): A932-40, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23326841

RESUMO

White organic light emitting diodes (WOLEDs) suffer from poor outcoupling efficiencies. The use of Bragg-gratings to enhance the outcoupling efficiency is very promising for light extraction in OLEDs, but such periodic structures can lead to angular or spectral dependencies in the devices. Here we present a method which combines highly efficient outcoupling by a TiO(2)-Bragg-grating leading to a 104% efficiency enhancement and an additional high quality microlens diffusor at the substrate/air interface. With the addition of this diffusor, we achieved not only a uniform white emission, but also further increased the already improved device efficiency by another 94% leading to an overall enhancement factor of about 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...