Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401140, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520204

RESUMO

The performance of robotic systems can benefit from low-density material actuators that emulate muscle typology (e.g., fast and slow twitch) of natural systems. Recent reports detail the thermomechanical, chemical, electrical, and pneumatic response of twisted and coiled fibers. The geometrical constraints imparted on typically commodity materials realize distinguished stimuli-induced actuation including low density, high force, and moderate stroke. Here, actuators are prepared by twisting fibers composed of liquid crystal elastomers (LCEs). The actuators combine the inherent stimuli-response of LCEs with the geometrical constraints of twisted fiber actuators to dramatically increase the deformation rate, specific work, and achievable force output. In some geometries, the thermomechanical response of the LCE exhibits a pseudo-first-order transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...